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ABSTRACT

An approximate analytical model has been developed to
predict heat transfer and flow characteristics of a steady state,
two dimensional laminar boundary layer in the vicinity of a
vertical flat plate under natural convection. The plate dis-
sipates heat, with multi-step changes in surface heat flux of
an arbitrary pattern, into an extensive, stagnant fluid which
is maintained at uniform temperature. Wall temperature and
maximum velocity variations are predicted and compared with
existing numerical data, which were obtained by solving the
boundary layer equations for cases with a number of uniform
heat flux sources mounted fush on a vertical adiabatic plate
in air using finite difference methods. The agreement is good.
In order to examine the validity and accuracy of the present
model, additional test computations were carried out for situa-
tions in which either the exact solutions or the proper behavior
of the solutions are known. The model is shown to be valid and
discussions are included herein as a result.

NOMENCLATURE

¢ parameter, C = (vPrC,/4)?3 or € = Pr/(4C?)
Cu, Ch parameters defined in Eqgs. (18), and (19) or (20)
erfen e dr

Complementary Error function, ﬁ

n
T fu functions defined by Egs. (11) and (12)
g gravitational acceleration

G, Gm functions given in Table 1

).z,,izm functions given in Table 2

Hoy Hom functions expressed by Egs. (45) and (44)

i"erfc n Complementary Error function integrated n-times,

o«
/ i"lerfc 7 dr, iterfcn = ierfcn, i%erfcn = erfcn
7

thermal conductivity of fluid
P square root of Prandtl number, vPr
q local heat-flux
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q dimensionless local heat-flux, ¢/qy,

q.,qn expressions given by Egs. (41) and (40)

time variable defined in ¢ — y plane

temperature excess over ambient fluid temperature
local velocity parallel to plate, in z-direction
characteristic velocity across the boundary layer
dimensionless u-velocity defined by Eq. (47)

local velocity normal to plate, in y-direction
vertical coordinate measured from leading edge
horizontal coordinate measured from plate surface

@H e qE e

Greek Symbols

thermal diffusivity of fluid, &/(pc,)

thermal expansion coefficient, —(8p/8T)p/p
function defined by Eq. (38)

variable defined by Eq. (13) or Eq. (48)
variable defined by Eq. (14) or Eq. (48)
kinematic viscosity, u/p

dimensionless z-coordinate, z/z,

"Ga
€

modifying functions
function defined by Eq. (39)
dimensionless temperature defined by Eq. (46)
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Subscripts

0 ~ parameters at leading section
) parameters at i-th step

r references

w wall conditions

Dimensionless Groups

G* modified Grashof number, g3¢,z}/kv?
Gr, Grashof number, ¢3T,,z%/v*

Gr; modified Grashof number, g3q,,z*/kv?
Nu, Nusselt number, gy,,z/Tyk

Pr Prandtl number, v/«




INTRODUCTION

The natural convection heat transfer from a vertical flat

plate has been a subject of numerous investigations in the past -

few decades. The plate with thermal conditions that allow sim-
ilarity transformations have been examined by Ostrach (1953),
Sparrow and Gregg (1956, 1958), and Jaluria and Gebhart
(1977). They have considered steady state, two dimensional
laminar boundary layer equations for uniform wall tempera-
ture, uniform surface heat flux, excess wall temperature vari-
ations of the power and exponential forms, and a line source
on an adiabatic plate. Yang (1960) found that there are no
other types of boundary conditions which would make simi-
larity solutions possible for steady natural convection from a
vertical plate. Numerous studies have been carried out to ex-
pand available solutions for non-similar boundary conditions
by using various methods. Unfortunately, analytical solution
techniques for problems with arbitrary boundary conditions,
that are frequently expected from most practical applications,
are not available.

The modeling of an isolated vertical flat plate with arbi-
trary surface thermal conditions would be useful in many tech-
nological applications such as the thermal design of Printed
Circuit Boards (PCBs) on which a number of finite sized heat
sources are mounted. Complete thermal phenomena involved
in the final product of a PCB are too complex and are im-
practical to analyze as 2 whole. A PCB is often modeled as a
flat plate in thermal anaiyses with heat sources mounted flush
with its surface. Bar-Cohen (1985) has discussed and found
that it is possible to apply heat transfer relations developed
for a smooth wall to non-smooth component carrying PCBs.
Nonetheless, the sources are discrete and randomly distributed
in general. The heat transfer associated with PCB applications
is usually a conjugate heat transfer, in which all three modes of
heat transfer, namely heat conduction through the board, heat
convection in the ambient fluid and surface radiation to the
surroundings, may occur simultaneously. It becomes appar-
ent that neither the resulting wall temperature nor convective
heat flux variations would be known a priori, and similarity
transformations would rarely be allowed in the analyses.

During the early stages of an ongoing development towards
conjugate thermal modeling of a PCB cooled by natural con-
vection, the present authors adopted the flat plate approxima-
tion but recognized a need for a model that can predict wall
temperature variations in a vertical plate when arbitrary sur-
face heat flux variations are prescribed. Only then, by means
of an iterative procedure, would the model become capable
of simulating conjugate heat transfer which is ubiquitous in
situations involving PCBs (Lee and Yovanovich, 1989). As
previously mentioned, an analytical model capable of dealing
with problems under the present consideration does not ex-
ist in the literature. Other techniques to obtain solutions for
cases with the arbitrary thermal conditions may include exper-
imental investigations and fully numerical methods. The data
from experiments are, however, those of case-by-case studies
and cannot be manipulated to predict results of other cases,
since their range of reliable application is mostly limited within
the range of parameters that are examined. Utilization of fully
numerical methods such as finite difference or finite element
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methods usually requires a main-frame computer with associ-
ated high computing expenses, and may become impractical
in some situations. Many applications call for simpler and in-
expensive solution techniques, though they may be less accu-
rate than more rigorous and time consuming methods (Scheug,
1963).

In this paper, an approximate analytical model is presented
which can be used to predict two dimensional laminar natura]
convection flow and heat transfer about a vertical flat piate
dissipating energy into a quiescent medium with multi-step
changes in surface heat flux of an arbitrary pattern. With
sufficient discretization, the model can be applied to most sur-
face heat flux variations that can be expected from a flat piate
model of PCBs. :

Other approximate methods are available in the literature
for cases with a continuous variation in the thermal bouad-
ary conditions (Tribus, 1958, Raithby and Hollands, 1973).
However, applicability of these results is limited to problems
that closely maintain the form of the specified polynomials
in characterizing the temperature and velocity profiles across
the boundary layer. This deficiency in Tribus’s solutions was
pointed out and further discussed by Sparrow and Gregg in
their “Authors Closure” following Tribus’s discussion. In ad-
dition, Zinnes (1970) has shown that, when the surface of a
plate experiences abrupt thermal variations, the results ob-
tained by using the model of Tribus considerably deviate from
those obtained by using finite difference methods.

The downstream wall temperature and maximum veloc-
ity variations are obtained by using the present model and
compared with existing numerical data of Jaluria (1982), who
solved the boundary layer equations by using finite difference
methods for cases with a number of strip thermal sources of
uniform surface heat flux mounted flush on an adiabatic plate
in air. The comparison resulted in satisfactory to good agree-
ment. Since the present model is developed based on an ap-
proximate method, computations are carried out to examine
the validity and accuracy of the model. A complete verification
over all ranges of parameters is obviously neither practical nor
necessary for the present purpose. The validity of the model
is, therefore, demonstrated within the range of parameters for
comparisons with the results of the aforementioned numerical
data. The model is further validated by examining its behav-
ior using the cases for which either the exact solutions or the
proper behavior of the solutions are known.

PROBLEM STATEMENT

The geometric configuration and coordinate system of the
problem are depicted in Fig. 1, where a vertical flat plate is
shown with a possible step variation in surface heat flux. The
problem is two dimensional in the z — y plane, having a large
transverse dimension in the z-direction normal to the page.
The plate is dissipating heat into an extensive, quiescent fluid
which is assumed to be maintained at uniform temperature. As
shown in the figure, the value of the sectional heat flux, except
u, in the leading section, may be zero; the plate is insulated, or
negative; the fluid is heating the plate, so long as the resulting
temperature excess over the ambient fluid temperature at any
point within the boundary layer is maintained positive.
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A set of boundary layer equations that governs two dimen-
sional, steady state momentum and energy transport in natural
convection is written below.

ui v oy 1
or dy (1)
du  du o%u ’
uxﬁ'v-@ = Ila—y..,‘*'gﬂT (2)
T aT o*T
uz T va—y- = a—a—‘!;? (3)

The boundary conditions associated with the above equations
are

aty=0, u=v=0,
AT
—ké—&-:qw,, for0<z < zg
oT .
—k=—=gq,, forzi1<z<z;1=123,...
dy
asy—oo, u—0, T -0
atz=0, u=T=0 (4)

where z and y are the coordinates parallel and normal to the
plate, © and v are the corresponding components of the veloc-
ity, and T is the local temperature excess over the ambient fluid
temperature. All g,, including gu, are uniform. The usual as-
sumptions and approximations, such as those of constant fluid
properties except the density in the derivation of the buoyant
term and negligible viscous heating, are made in deriving these
equations. The present problem includes the cases with a step
change in surface heat flux when ¢ = 1, which were inclusively
examined by the present authors in an earlier study (Lee and
Yovanovich, 1988).

z, u
Za Qe
k-th step
s T=0,u=v=0
Ze-1 ’
] {} g ; Gravity
n_
" — Qs
1
] Qu,
first step e
Iﬂ__L j Qg
I__=_0 Ys ¥y e

Geometric configuration shown with a schematic sur-
face heat flux variation.

Figure 1:
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ANALYSIS

An exact analytical solution to the above problem does not
exist, and obtaining such solutions in the near future seems
improbable. As was done in the earlier study, the non-linear
convection terms in the left hand side of the momentum and
energy equations, Egs. (2) and (3), are linearized through two
stages as follows. :

Firstly, a transient coordinate ¢ is introduced through a
t — z transformation defined as

t= ()
where u, is called the characteristic velocity. By the above
definition, it can be said that the distance, measured from the
leading edge of the plate at z = 0, to a location along the z-
coordinate corresponds to a specific lapse in time. The original
z-coordinate is hence transformed into a transient coordinate
specified by the time variable ¢. The characteristic velocity is
presently an unknown function of z. It may be viewed as an
effective mean flow velocity of the fluid in the boundary layer
initiated at the leading edge of the plate.

Secondly, upon this transformation, an assumption is made
such that diffusion is dominant in transporting both heat and
momentum across the boundary layer in the y-direction at fixed
time ¢. The effect of convection transport in the ¢ — y plane is
thereby neglected, and profiles of the temperature and velocity
distributions in the original z — y plane will be determined ap-
proximately by transient diffusion equations in the ¢ —y plane.
Subsequently, the above governing differential equations are
linearized in the t — y plane and the transformed momentum
and energy equations take forms of

&lu

3u d%u
é—t' = Uay2 +gpT (6)
aT 0T
= = —_— 7
at ) M

respectively. This set of equations is identical to the governing
differential equations which describe real time transient natural
convection heat transfer from an infinite plate. The continuity
equation, Eq. (1), is obsolete since the u-velocity becomes one
dimensional in y at fixed time ¢t. The above assumption of dom-
inant diffusion in the y-direction in the ¢ — y plane can only be
validated indirectly through comparisons of the resulting tem-
perature and velocity distributions with existing and known
data, as will be carried out in the following section. The cor-
responding transient boundary conditions that are compatible
with those given by Eq. (4) can now be given as

aty=0, u=0,
oT
—k-a—y=qw° for0<t<ty
—k-a£=qw'. forti, <t<t;;1=1,2,3,...
3y
asy—oo, u—0, T >0
att=0, uv=T=0 (8)

where to and t; are the times corresponding to the locations at
z¢ and z;, respectively.



The transient solutions to the above equations are found for
the temperature and velocity distributions by means of simi-
larity transformations and the method of superposition (Lee,
1988). They are, for the x-th step defined for tc_y < ¢t < tr,

T = —‘,{—E [qwot‘/’fr(vo) + _f:(qw.- = Qu,)(t — t,-_l)l/"'fr(m)]
o)
(10)

where

fr{n) = ierfen

(11)

n izerfcn for Pr=1
fu(n) = T (i%erfc n — Perfc \/Z’—r) for Pr#1 (12)
y
-7 13
Y

= 2‘/a(t - ti—l)

These solutions are exact to the set of transient equations,
Egs. (6) to (8), which approximately represents the set of orig-
inal steady state equations, Egs. (1) to (4), through the t — z
transformation. Determination of ¢, as well as ¢ — ¢;_,, in terms
of z would, therefore, render these equations to become ap-
proximate solutions to the original problem in the z — y plane.
Although the present analysis is based on the linearization of
the equations in the ¢ — y plane, it is to be emphasized that
the non-linearity of the steady state problem in the z — y plane
will be restored by treating each and every t — z transforma-
tion, that is associated with the time lapse corresponding to
the displacement within each step, to be specific as detailed
below. .

Consider the case of uniform surface heat flux, or, equiva-
lently, the leading section of the present problem between z = 0
and z = z,.'Owing to the boundary layer approximations, so-
lutions at the upstream locations are unaffected by the thermal
variations imposed at the downstream locations. The solutions
in this section, where k = 0, are thus given solely by the first
terms in Egs. (9) and (10), in which ¢t is the only unknown
parameter in terms of the steady state variables.

It was found in the earlier study {Lee and Yovanovich, 1988)
that the required ¢ — z transformation for 0 < z < z, is

(14)

I -~
t=—=0C
Ue

(15)

where C is a function only of the Prandtl number, Pr, and is
given by two different expressions. They are

z
v +2/%
z Gl‘z

C= % (16)
n
and
~ | 2/3
é= (‘/_PEC"> (17)

where é’u and C-',, were determined by using the integral method.

PrG(

Y

TG
5

- 2G 2
=8 +—— 18
C 1+ 1/\/Pr) (18)
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Table 1: G, and G,

Pr=1 Pr#1 (p=+vPr)
G T-4/2 2p° + (8v/2 — 9)p® + 5p° + 2 — 2(p? + 1)5/2
¢ 120 60 p>(1 - p?)
G | 19713V2 | 27 +7p5+(8vE-9)(p* +5°)+ 757 +2~2(p* +1)7/2
m 105 32.5p3(1 - p?)2
f
- Pr _ -
2 _
Ci = ~;GL. (19)

where G, and G,, are tabulated in Table 1.

The two different expressions, as given by Eqgs. (16) and
(17), for C are necessary in order to conserve concurrently the
energy and momentum flows in the boundary layer. The t — z
transformation, Eq. (15), with C given by Eq. (16) transforms
t in the similarity variable 7o and t!/? in the temperature so-
lution, Eq. (9). Equation (15) with C given by Eq. (17) trans-
forms t*/? occurring in the velocity solution, Eq. (10).

A value of é,, may alternatively be found based on any
natural convection heat transfer results cbtained for a vertical
plate with uniform surface heat flux. For example, using the
correlation equation presented by Fujii and Fujii (1976) for Nu,
as a function of Pr and Gr, C, can be expressed as

G = 1 Nu, 1 Pt )1/& (20)
T VARG T /r \4+9vPr+ 10Pr

For the transformation of the time variables in the succeed-
ing step sections, the ¢t — z transformation defined by Eq. (5)
can further be generalized for the time lapse t —t;_; associated
within the i-th step as

T -

Zi-
t—tiy = il

(21)

fori=1,2,3,...
(-] N
Upon this transformation, the problem is now reduced to
determining the characteristic velocities introduced at every
section of the discretized domain. For the x-th step change,
introduced beyond z = z._,, all the existing characteristic
velocities, that are determined and used to define the ¢ — z
transformations up to the {x — 1)-th step, have to be mod-
ified. Furthermore, an additional characteristic velocity has
to be determined which would represent the flow within the
new boundary layer evolved from the surface at the beginning
of the x-th step. The number of unknown modifying functions
required to determine the characteristic velocities, and in turn,
complete the solutions in the x-th step, becomes x + 1. This
number can be seen also from the above transient solutions,
Eqgs. (9) and (10), as the total number of functions required to
transform t and t — t;_;, for 7 from 1 to «, is &£ + 1.
In order to clarify this, consider a problem with two step
changes in surface heat flux. The t —z transformations within




£ s ——

the first step, zo < z < z;, are defined as

P T
t = Coy TeRy (22)
t=to = G (23)

rz

z
A subscript 1 is used to denote 4.31 and 1/;1 as the modifying
functions incurred by the first step and Cis given previously.
1 is the function that modifies the primary characteristic ve-
locity established from the leading edge of the plate, whereas
22;1 is the function required in determining the characteristic
velocity within the secondary boundary layer evolved at the
beginning of the first step, £ = zo. They were determined
by using the integral method in the earlier study (Lee and
Yovanovich, 1988).

As soon as the second step is introduced, another boundary
layer evolves from the surface at the beginning of the second
step. This additional boundary layer grows within the existing
secondary boundary layer in much the same way as the sec-
ondary boundary layer itself evolved when the first step was
introduced. Not only do the two existing characteristic veloci-
ties as found in the above equations, namely £ Gr'zls/Cep and
Z Gr-2/5/c¢1, have to be modified, but a new characteristic
velocxty for the flow in the additional boundary layer has to be
determined also. Therefore, two additional functions, say &2
and Q., are required to modify the two existing characteristic
velocities, and a third function, v, is introduced to determine
the characteristic velocity within the new boundary layer. The
resulting transformation functions that are associated with the
second step, z; < z £ z;, may then be written as

- - - z
t = Corbrpgom (24)
~ =~ . T—Zp
t—ty = Cthor 2GS (25)
P r—2 .
t—tl = C‘I,)gy—'wl'g (26)
;Gr,

The above set of transformation functions show that there are
three unknown modifying functions in all, due to the introduc-
tion of the second step.

It was found (Lee, 1988) that the heat transfer character-
istic of the flow within the first step is insensitive to induced
changes in the ¢1 variations. This observation may be postu-

lated to yield a general interpvretation, and as such, the result-

ing heat transfer phenomena are not strongly dependent on
those modifying functions that modify ezisting characteristic
velocities. Moreover, the ¢, variations are shown to respond
gradually to the step changes at the immediate downstream
locations beyond z = zg, in the region where the greatest por-
tion of the changes in heat transfer rate take place. The abrupt
changes in the heat transfer rate, observed right after the step,
are mostly attributed to the changes in ¥, variations. Further
modifying functions, 4.52 and ., that are introduced to modify
ezisting characteristic velocities due to the addition of the sec-
ond step, are expected to behave not only qualitatively similar
to ¢,, but also quantitatively similar to each other. In all, they
are assumed to be unique, G2 = ¢, and hence, the above set

243

of transformations become

- v - z
t = C s 27
o1 02 G (27)
t—te = Ciids —T“.‘? (28)
A x—zl
t—t1 = C¢: oy LG (29)

Two functions, q;z and 11-)2, are now required to be determined.

Although the approximation leading to the reduction of
the number of unknown modifying functions to two was based
on the observation that primarily concerns temperature dis-
tributions, the same may be applied for the velocity distribu-
tions. Similar approximations are introduced as additional step
changes are considered. As a result, (x ~ 1) t —z transforma-
tions, required due to the induction of the x-th step between
T = z._; and = = z, are defined as

~ - - - T
t = C¢1 P2 453 Or :Gr;z 5 (30)
=T T~ - T2
t—ty = C 2 < 31
0 Y1 92 ¥ Q@ "Gr;25 ( )
= Cndy - by ik 32
t"‘tx - ¢'2 Ps3 P ,Gr;z/s ( )
= - - I —Zi
t—tici = Cthidipy -+ 0 —-“G—rﬂsi (33)
%5 T Te-1
t - t,‘_l C wk W (34)

Each additional x-th step requires the determination of two
additional modifying functions, é,‘ and t;‘, that are dependent
on the history of the surface thermal condition up to and in-
cluding the step. These functions are determined, again, by
applying the integral method. After manipulating, simplifying
and rearranging expressions, the integral method results in a
set of equations as

x—1
.« N . My B B[O\ d0}
s 5€q (q"')T: - q,,,‘) - ; [( 77:*‘%.3 T B Hen ) df]
= TWmoldve — VislO%m
dE ‘ TV Hma Sz Nen (35)
. .\ 2/5
&, = (§—> (36)
where the initial condition for 42 is
lim v2=0 (37)
5"5:—1
and
Y%= (38)
& = 14 (39)
i=t
~
G = 1+ 2 (g0, — qo (40)




Table 2 : hn(v) and ho(v)

i () 1297 + 745 + 793 + 12 + 3593(3 + 1)3/2 = 12(42 + 1)7/3
m 19 - 13v2
Pr=1
z 29° + 597 + 597 + 2 - 2(7% + 1)%/3
he(7) T-4/2
) [(0*~1)p-1) {7P? 12 (+*+ 1)+ 202> + 1)(p +p+1)("+1)}
ha() | +20%( + 1)(a? + 1)7/2 - 247 +5%)7/3 = 2(p%4? + 1)7/2]
+[207 + 78 + (8VI - 9)(p* + 2%) + T? + 2 - 2(p? + 1)7/2)
Pr#1
[4P3(_72 + 1)5/2 - 2(P2'7= + 1)5/1 - 2(,12 +p2)5/2
Re(v) +2(p° = 29 + 1)(v° + 1) - 59%(p - 1)(+* + 47)]
+ 2%+ (8VZ-9)p® +5p2 + 2~ 207 + 1)*/3]
~
- - . El_
€= 143 (e -a )0 -2 (41)
i=1
. Quw;
q . = —— 42
” - (42)
j— Zi
& = P (43)
M, and X, are given by recurrence relations as
}("'" = ;{mx—l +(q;l. - q';h:—l) (44)

x=1
x [(q;‘ =G )V T Em() + 2 (02 = gm ) 7tm(7~/*r.-)]

=1
)"(:g = )'{zg-l + (qt:l,‘ - q:u,‘_l) (45)

x—1
X [(q;,, = oo TR+ () + 2o (al, - q;,-_,h?"le(%/'r.-)}
i=1
with ¥m, = ¥, = 1, and algebraic expressions for hn,(-) and
h(-) can be found in Table 2.

This first order ordinary differential equation, Eq. (35), is
independent of ®, and is, therefore, decoupled from Eq. (36).
With the above initial condition, it represents a complete prob-
lem that can be solved numerically for all 43 in succession for
1 from 1 to x with given uniform 4y, and Pr. Upon finding
~, §‘~ca.n be determined from Eq. (36). The modifying func-
tions ¢; and ¢; can be subsequently obtained by considering
Egs. (39) and (38), respectively. Readers who are interested in
the detailed derivations and complete expressions of the differ-
ential terms appearing in the above differential equation may
find the full context in Lee, 1988, where additional discussions
on the modifying functions are also included.

RESULTS AND DISCUSSION

Temperature and Velocity Distributions. By substi-
tuting the t —z transformations, defined by Egs. (30) through
(34), into Eqs. (9) and (10), a set of dimensionless approximate
solutions to the original steady state problem may be obtained

T
q,,,o:z:o/k:Gr;ul/5

ﬂ_;‘ [fr(no) + X‘:(‘h. - q;“_‘)'y,'fr(m)] (46)

i=1

<

= 53/56":“6(:/2 [fu(ﬂo) + Z(q;}; - q;,'._‘)'Ygfu(ni)] (47)

=1

for z._1 < z < z., where fr(-) and fu(-) are as defined by
Egs. (11) and (12), respectively, and

Cr — G, ° L (48)
o,

Mo = %M = 61/5\/— I,

For an additional «-th step, ~, and d, found in the previous
section are required to complete the above solutions.

The above expressions for the temperature and velocity
distributions are given in dimensionless forms with the non-
dimensionalizing parameters which are invariant of z. They
are evaluated for the case in air with a number of thermal
sources mounted flush with the surface of an adiabatic plate,
and the results are plotted in Fig. 2. All eight sources shown in
this figure have uniform surface heat flux of equal strength and
size, with non-source spaces equal to the source size. The value
of C, from Eq. (20) was used in evaluating local temperatures
throughout the present study, as it was recommended by Lee
and Yovanovich (1988) for Pr > 0.1.

3
X3
3

X

>
3
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R
R

3R
“.

R
s“
X

&3
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&
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Figure 2: Dimensionless temperature and velocity distribu-

tions due to alternating positive uniform and zero
surface heat fluxes of equal size : Pr = 0.7.
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No. of sources £ &
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From Eq. {47)
-==- Numerical Solution
(Jaluria, 1982)
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Figure 3: Comparison of maximum velocity variation with

identical thermal sources of uniform surface heat flux
on an adiabatic plate : Pr = 0.7.

The dimensionless local maximum flow velocity, Upnayx, is
plotted and compared with the numerical data of Jaluria (1982)
in Fig. 3 for cases with identical thermal sources and different
source spacings. The sources are again mounted flush on an

adiabatic plate in air, and they all have uniform surface heat .

flux. The figure shows excellent agreement of the velocity vari-
ations with the numerical results.

Wall Temperature Variation. The local wall temper-
ature for z,.; < z < z, can be obtained by substituting
no = n; = 0 into Eq. (46). The resulting expression is

Ty 61/5 ‘i)‘ [ &
8, = i = T\ 1+ . — ;, i
o T kG T G [P )
(49)
where ierfc0 = 1/\/7 was used.

3

From Eq. (49)
--—- Numerical Solution
» (Jaluria, 1982)

! 1] L ) L 1 1 L 1 b i

0 2 4 6 8 10 12 14

Comparison of dimensionless wall temperature vari-
ation due to two identical thermal sources of uniform
surface heat flux on an adiabatic plate with various
source spacings : Pr=0.7.

Comparisons of the wall temperature variations evaluated
by using the present model are made with the results of Jaluria
(1982) who used finite difference methods. The plots shown in
Fig. 4 are obtained for two identical strip thermal sources of
uniform surface heat flux, mounted flush on an adiabatic plate
in air with a source spacing between the leading edges of the
strips equal to &;. Satisfactory agreement of the present results,
particularly in the trend of the local peak temperatures with
increasing &, with the numerical solutions is obtained. Figure
5 depicts a similar situation with three sources for Pr = 0.1,
0.7 and 6, showing the effect of the Prandtl number on the
surface temperature variations.

An examination of Fig. 4 reveals that the local peak tem-
perature over the downstream source decays and becomes lower
than that over the upstream source as the source spacing in-
creases. The wall temperature due to the single source also
decreases asymptotically to the ambient temperature as £ in-
creases, and the fluid temperature excess within the boundary
layer always remains positive.

The positive fluid temperature excess represents an upward
buoyant force on the fluid. A portion of this force will be used
to overcome the friction, and the remainder will be used to
accelerate the flow, resulting in a perpetual increase in the
overall downstream flow velocity. Despite the fact that there
is a higher fluid temperature at the beginning of the second
source than at the leading edge of the first one, this fluid flow
results in a lower temperature over the second source when
the source spacing is large enough. As far as the downstream
source is concerned, the flow becomes an induced free stream
flow and thus, enhances the heat transfer rate.

Jaluria’s numerical prediction overestimates the peak tem-
perature over the first source by approximately 5% when it is
compared to the result of Eq. (49), whose overall scale of the
magnitude is based on the correlation equation of Fujii and
Fujii (1976) through C, from Eq. (20).

From Eq. (49)
- ~~= Numerical Solution
(Jaluria, 1982)

8 10 12 14

Comparison of dimensionless wall temperature vari-
ation due to three identical thermal sources of uni-
form surface heat flux on an adiabatic plate and the
effect of Prandtl number.

Figure 5:




The rest of this section exhibits some results obtained for
cases that are intended to examine the validity and accuracy
of the present model. A couple of figures for selected cases are
presented herein for discussion purposes.

An expression for the dimensionless wall temperature varia-
tion based on an arbitrary reference heat flux ¢, and a reference
length scale z. can be obtained from Eq. (49), as

( )4/5(2) \/5; [Hg;(q;‘.—q:,.-_l)m-]

(50)
where G* is the modified Grashof number based on ¢, and
z.. This equation supersedes the previous equation for 8, as
they become identical when ¢, and z; are chosen to be the
references. Although the above equation carries no additional
information from Eq. (49), the usefulness of this expression
is apparent in Fig. 6, as it allows to compare different wall
temperature variations for various combinations of gy, and zo
on the same plot.

In Fig. 6, the line denoted by (a) is the result of alternating
thermal sources of equal size dissipating at two different lev-
els of uniform heat fluxes. The line denoted by (b) is for the
case with a continuous and uniform surface heat flux whose
magnitude is equal to the average value of the alternating heat
fluxes. The lines denoted by (c) through (f) are the results of
other combinations of heat flux distributions as shown at the
top of the figure. All cases dissipate the same total amount
of energy into the fluid over the length of the plate. They are
evaluated for Pr = 0.7.

As can be seen from Fig. 6, the effect of the step changes
in the heat flux input made at the upstream decays rather
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Figure 6: Dimensionless wall temperature variation : Pr = 0.7.
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quickly, and it may be considered to penetrate no mocre than
approximately five to six step distances into the downstream.
The flow characteristics far enough downstream become indif-
ferent to the specifics of the upstream heat input variation,
as long as the total energy dissipated into the flow over the
upstream section is kept the same. More examinations with
different combinations of surface heat flux exhibited the same
behavior.

Further testing, which involves another model, named a
temperature model and developed by Lee (1988) for cases with
a step change in surface temperature, is carried out as follows.

A step change in uniform wall temperature is denoted by
(a) in Fig. 7 for T, = Ty, /Tw, = 0.75 and Pr = 0.7. Using
this as an input to the temperature model, the corresponding
surface heat flux variation denoted by (b) is obtained. This sur-
face heat flux variation is then discretized to yield multi-step
changes denoted by {¢). Although the step sizes can be arbi-
trary, they are determined such that every step before z/z, = 1
dissipates roughly the same amount of energy into the fuid.
The step sizes after z/z, = 1 are determined simply by over-
lapping those from z/z, < 1. The magnitude of heat Aux in
each step is equal to the average heat flux of the original vari-
ation over the step. This multi-step change in surface heat
flux is used in the present model, Eq. (49), to produce the wall
temperature variation denoted by (d). The reference heat flux,
¢-, was sized to yield Two/(q,::,/kGri{‘) = 1 at the beginning
of the process.

As can be seen from Fig. 7, excellent agreement between the
input and the resulting temperature variations, lines (a) and
(d), is obtained. Peaks observed in the resulting temperature
variation at the leading edge, z/z. = 0, and at the point of
a step, z/z, = 1, are due to the finite representation, line
(c), of the unbounded original heat Aux variation, line (), at
the locations. Performing the same process with other values
of T;, as an input wall temperature variation resulted in the
same level of agreement.
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Figure 7: Dimensionless wall temperature and surface heat
flux variations : Pr = 0.7.
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Results of the present model are less accurate in the vicinity
f the leading edge and locations of a discontinuity in surface

W hermal variations, due to the boundary layer approximations.

Jaluria (1985), using finite difference methods, investigated
¢<his subject and presented the level of inaccuracies introduced
by the approximations in both temperature and maximum ve-
locity variations for different modified Grashof numbers.

A pertinent application of the model includes the thermal
design of printed circuit boards (PCBs). In view of PCB ap-
plications, conjugate analyses would be required which include
conduction heat transfer in the board substrate. When air is
used as the coolant fluid as in most cases, the thermal con-
ductivity of a typical substrate is usually orders of magnitude
greater than that of the air, and the natural convection heat
transfer coefficients are usually small. As a result, the in-plane
conduction heat transfer would be characterized predominantly
by the thermal properties of the substrate, and the effect of
the fluid conduction heat transfer in the directions parallel to
the plate surface may be neglected. This further supports the
boundary layer approximation in the energy equation which
already ignores the streamwise conduction heat transfer in the
fluid.

Since the model is capable of dealing with arbitrary surface
heat flux variations, it can be used in conjunction with a heat
conduction analysis in the solid plate for a two dimensional
flat plate modeling of conjugate heat transfer problems (Lee
and Yovanovich, 1989). Further, as the fluid conduction in the
direction across the plate width may be neglected as aforemen-
tioned, the present two dimensional model may also be used in
olving full three dimensional conjugate problems involving an
isolated vertical flat plate.
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