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ABSTRACT

A simple model is developed to predict the heat transfer char-
acteristics of a vertical plate with arbitrarily prescribed surface
heat-flux variations under a buoyancy driven flow. The analysis is
based on the linearized approximations to the boundary layer form
of the conservation equations. Solutions for the surface tempera-
ture of the plate and fluid temperature distributions are obtained
for air. The cases with a variety of different surface heat-flux dis-
tributions are examined, and the results are compared with those
obtained by using methods that are capable of producing exact
solutions. The agreement is excellent. The comparisons validate
the use of the present model and demonstrate the capability of the
current analysis to produce correct solutions.

NOMENCLATURE

b exponent in equation (33)

c coefficient given by equation (26)

G, G coefficients

fu function defined by equation (15)

g gravitational acceleration

Gr; modified Grashof number, gf8g,z4/kv?
Gr}, modified Grashof number, gBgu,z*/kv?
Gr, modified Grashof number, g47,,z*/kv?
I average heat transfer coefficient

k thermal conductivity

Nu, Nusselt number, qu,z/Twk

Pr Prandtl number, v/a

q local heat flux

q dimensionless heat flux, ¢/qu,

q average heat flux defined by equation (32)
Quw heat dissipation defined by equation (30)
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Re, Reynolds number, u.z/v
t variable defined by equation (9)
T temperature excess over ambient fluid temperature
u local velocity in the z-direction
U, effective flow velocity across the boundary layer
v local velocity in the y-direction

coordinate along the plate
y coordinate normal to the plate

Greek Symbols

thermal diffusivity of fluid
thermal expansion coefficient
boundary layer thickness
heat-flux difference, qu; — qu;_,
dummy variable

similarity variable

dimensionless temperature, equation (40)
kinematic viscosity
dimensionless z-coordinate, z/z;
dependent variable, u or T'
delay factor

XeMmT DI AL IR
=1
<

Subscripts

a arbitrary references

1 parameters at :-th step

w wall conditions

I3 parameters at x-th step

0 parameters at leading section

INTRODUCTION

The natural convection heat transfer from a vertical plate has
been a subject of numerous investigations in the past few decades.
Plates with thermal conditions that allow similarity transforma-
tions have been examined by QOstrach (1953), Sparrow and Gregg
(1956, 1958), and Jaluria and Gebhart (1977). They have consid-




ered steady-state, two-dimensional laminar boundary layer equa-
tions for a uniform wall temperature, a uniform surface heat fux,
excess wall temperature variations of the power and exponential
forms, and a line source on an adiabatic plate. Yang (1960) re-
ported that there are no other types of boundary conditions which
would make similarity solutions possible for steady natural convec-
tion heat transfer from a vertical plate.

Many more studies have followed so as to expand the num-
ber of available solutions for non-similar boundary conditions.
For discontinuous temperature variations, Schetz and Eichhorn
(1964) conducted an experiment with a Mach-Zehnder Interfer-
ometer. Hayday et al. (1967) and Sokovishin and Erman (1982)
carried out numerical studies, and Smith (1970), Kelleher (1971),
and Kao (1975) solved the same problem using series expansions.
Jaluria (1982, 1985), employing finite difference methods, inves-
tigated cases with a number of uniform heat-fux sources on an
adiabatic plate in air. Several approximating techniques are also
available for surfaces with continuous thermal conditions. An in-
tegral method was employed by Sparrow (1955) and Scherberg
(1964), and a Gértler-type series expansion was used by Kelleher
and Yang (1972). Kao and his co-workers (1977) developed local
similarity and local non-similarity methods for problems with arbi-
trarily specified surface thermal conditions and presented compar-
isons of the results with numerical solutions. The boundary layer
equations with non-uniform surface thermal conditions were again
solved numerically by Yang et al. (1982). They obtained Merk-
type series solutions which resulted in values that are identical or
very close to the numerical results of Kao et al. (1977) for a variety
of surface conditions. More recently, Lee and Yovanovich (1989,
1991a), and Park and Tien (1990) also developed approximate
methods for a vertical plate with changes in thermal conditions.

Except for numerical methods, such as the finite difference,
finite volume and finite element methods, exact solution tech-
niques for general cases of non-similar problems do not exist in
the literature. For the cases with an arbitrary surface variation,
the boundary layer equations may be modified through variable
transformations but the resulting differential equations will re-
main partial with two independent space variables. Close-to-exact
solutions to these partial differential equations can be found by
means of direct numerical integrations, or approximate solutions
may be obtained by employing either the local similarity or lo-
cal non-similarity method (Kao et al., 1977). The local similarity
method presumes that all the terms associated with one of the
transformed variables are negligible and solves the resulting set of
ordinary differential equations. The local non-similarity method
is an improved version of the local similarity method. It expands
the terms that are ignored in the local similarity method to an
asymptotic type of series transforming the problem into succes-
sive sets of ordinary differential equations. In any case, the final
solutions to the ordinary differential equations resulting from the
similarity, local similarity or local non-similarity method must be
obtained by means of numerical integrations.

As can be seen from comparisons with the numerical results
presented by Kao et al. (1977), the local non-similarity method
is capable of producing highly accurate solutions for most of the
examples that were considered. It was found, however, that both
local similarity and local non-similarity methods fail to predict the
proper solutions for some cases.

Simple, general solutions are of a great value to those involved
in practical applications where problems arise in such a way that
the surface thermal condition is not known but is itself to be found.
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This interfacial condition established between the fluid and the
solid has to be determined by solving the fluid side convection
heat transfer problem and the solid side heat diffusion process in
an iterative procedure. Such problems are called conjugate prob-
lems. They occur in many situations including the thermal mod-
eling of printed circuit boards, and the iterative solution proce-
dure necessitates that the convection model be capable of dealing
with arbitrary surface thermal conditions. Numerous studies have
been carried out examining cases where the wall temperature is
prescribed and the heat flux is to be found. In many cases of
practical interest, however, it is often necessary to determine the
temperature of the wall given the surface heat flux.

In this paper, a new approximate method is developed based
on the linearization of the governing differential equations. The
linearization is performed by introducing an effective flow velocity
which is subsequently determined by relating the total thermal en-
ergy dissipated into the fluid to the effective kinetic energy of the
fluid flow. The effective flow velocity determined in this manner
becomes analogous to an externally induced flow velocity thereby
allowing the analysis to proceed in a way that is similar to forced
convection analysis. The result is an extremely simple, explicit
model that is capable of predicting laminar natural convection
heat transfer from a flat, vertical plate dissipating energy with ar-
bitrarily prescribed surface heat-flux variations. The model can be
used for cases involving step discontinuities as well as a continuous
variation in surface heat flux.

As with most approximate solutions, the validity of the present
model can only be established by comparing the results with data
obtained by using solution techniques that are capable of produc-
ing exact or close-to-exact solutions. The downstream wall tem-
perature and heat transfer characteristics are compared with the
data obtained by employing various solution methods for different
surface heat-flux conditions. The present model, consisting of a
summation of simple power terms, yields exceptionally accurate
and stable solutions.

PROBLEM STATEMENT

The geometric configuration and coordinate system of the prob-
lem are depicted in Fig. la, where a vertical plate is shown with a
continuous variation in surface heat flux. Also shown in the right
side of the figure is the description of the hydrodynamic boundary
layer whose thickness is greatly exaggerated in the y-direction.
The plate is dissipating heat into an extensive, quiescent fluid
which is assumed to be maintained at uniform temperature.

The conservation of mass, momentum and energy for two-
dimensional, steady-state, laminar boundary layer flow yields a
set of governing differential equations, expressed as

Ou v
e + ;,E =0 1
Ou  Bu 2y
u—a-; + 'Ua—y = ll-aF +gBT (2)
2T, O er .
az ¢ Ay "‘ayz ®)
The boundary conditions associated with the above equations are
aty=0, u=v=0, —k%:qw(x)
(4)

asy—oo, u—0, T—0
atz=0, u=T=0
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Figure 1 : Geometric configuration and coordinate system shown with schematic representations of surface heat flux
variation and development of boundary layers where surface heat flux is prescribed by (a) continuous variation; (b) step
changes; (c) an isolated step change in the wake of a buoyancy driven flow.

where T denotes the temperature excess over the ambient fluid
temperature. The usual assumptions and approximations, such
as those of constant fluid properties, except the density in the
derivation of the buoyant term, and negligible viscous heating are
made in deriving these equations.

Without a loss of generality, the surface heat-flux variation
qw(z) is discretized into a number of step changes as depicted in
Fig. 1b where only a few step changes are shown for brevity. The
surface thermal condition given in equation (4) can be replaced by

T
Ay
where z; = 0 when 7 = 0, and gy, is the average surface heat flux
over the i-th section between r = z; and z;4;. Obviously, a finer
discretization would yield a closer representation of the continuous
variation, and in such cases, g, may be approximated simply by
the heat flux at the mid-location of the section (i.e. qu; = gwat z =
(z; + i41)/2). It is to be noted from the figure that the sectional
heat flux may be zero when the section is adiabatic. Furthermore,
although it is not included in Fig. 1, the sectional heat flux may
become negative when the fluid is heating the section, so long
as the resulting vertical fluid velocity at any location within the
boundary layer is maintained positive in the z-direction.

Also shown in Fig. 1b are the outer edges of the boundary
layers developed by the onset of the step changes. The primary
boundary layer 6, that is developed by the initial step jump of quy
at the leading edge of the plate, is denoted with a subscript 0. In
addition to the primary boundary layer, the propagation of the
effects induced by the introduction of a succeeding step change
in surface heat flux into the fluid can be described as the growth
of a boundary layer. This inner boundary layer grows within and
blends into the outer layers, and the primary boundary layer, being
the outer-most layer, encompasses all the inner layers at all times.
Nonetheless, from an analysis point of view, it will be seen that
each sub-layer can be isolated from the outer layers. The layers
are denoted with the subscript which corresponds to that of the
matching step change.

(5)

=qy for ;; Lz < ey 1=0,1,2,..

y=0
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Figure lc depicts an iso-flux plate with an adiabatic surface
from the leading edge to ¢ = z;. Shown in the right side is the
growth of the corresponding sub-layer within the wake of the pri-
mary boundary layer. The boundary layers depicted in Fig. 1 may
be considered to be either momentum or thermal boundary lay-
ers since these two types of boundary layers would have similar
patterns except for the differences in their relative thicknesses.

LINEARIZATION OF EQUATIONS

An exact solution to the above problem for z > z; does not
exist. An approximate solution is sought in which the non-linear
convection terms appearing in the left side of the momentum and
energy equations, equations (2) and (3), are linearized by intro-
ducing an effective flow velocity:

(6)

where ¢ represents the dependent variable, either u or T, and u.(z)
is the effective flow velocity.

This approximation is applied to the differential equations and
the effective flow velocity is defined to be uniform across the bound-
ary layer. The consequence of this approximation is that the so-
lutions to the linearized equations will not exactly describe the
profiles of the dependent variables across the boundary layer. It is
to be emphasized, however, that the correct forms of the solutions
can still be obtained from the linearized equations. It requires
finding the function u.(z) that properly describes the characteris-
tics of the fluid flow in the z-direction. This can be accomplished
by maintaining the momentum balance across the boundary layer.

By integrating the above equation from y = 0 to § with ¢ = u,
the definition of u.(z) that is exact in the integral form of the
momentum equation is obtained as )
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Equation (1) was used in simplifying the numerator of the above
expression. Alternative definition of w.(z), that is exact in the
integral form of the energy equation, can also be obtained by inte-
grating equation (6) with ¢ = T'. This would lead to an expression
for u.(z) that involves the temperature field. But, as will become
apparent, the resulting expression for u.(z) is functionally identi-
cal to the one obtained from equation (7). Since only the determi-
nation of the functional dependency of t.(z) is necessary at this
stage of the analysis, equation (7) will be used in the following
section in determining u,(z).
A transient variable ¢ such that

dz
®
Ue(z)
is introduced to transform the linearized convective operator given

by the right side of equation (6). The above equation may be
integrated to obtain the parameter # as

_ [F 4
t—/o ue(() ©)

which can be viewed as the residence time of the flow from the
leading edge of the plate to the downstream location z. With the
use of the above newly defined variable, the original = — y plane is

transformed into the ¢ — y plane, and the momentum and energy
equations become, respectively,

dt =

7 &
E’ti = uéy—:+gﬂT (10)
ar T
ER (1)

Recall that the continuity equation, equation (1), was absorbed in
defining u.(z) and is, therefore, no longer necessary in the t -y
plane. The thermal boundary condition given by equation (5)
becomes

= Qu; for t; St(t,'.',l ; i=0,1,2,...

=t

(12)

where #; corresponds to z = z;.

The most notable features that are different in the above trans-
formed equations from the steady-state equations are the linearity
of the dependent variables u and T, and the decoupling of the
temperature field from the velocity field in the ¢ — y plane. The
solutions to the above equations will not be identical to those of
the original boundary layer equations. It is worthwhile, however,
for the establishment of the present analysis to remind that the
above equations will result in the correct forms of the exact solu-
tions once the proper expression of u.(z) is found according to the
definition given by equation (7).

ANALYSIS

The solutions to the linearized problem defined by equations (10)
to (12) with the rest of the boundary conditions specified in equa-
tion (4) can be found by means of similarity transformations and
the method of superposition (Lee, 1988). They are expressed in
terms of the complementary error functions, for the x-th step
change for z, < z < 2,44, as
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r = 2—12@ (qw.‘ - qwe-x)(t - t:’)l/2 ferfc i (13)
i=0
4 s
u = —\/IfgﬂZ(quu - qwi—l)(t - ti)s/z f"(m) (14)
=0
where
nilerfc g for Pr=1
fuln) = 2 (s - 7 (15)
% i’erfc n 1rerfc\/P_r for Pr#1
= ¥ (16)

2 a(t - t,’)

Here, and throughout the paper, gy,_, vanishes when ¢ = 0, and
to = 0

The local surface temperature can be obtained by substituting
¥ = 0 into equation (13). It follows that

L
Z(Qw.- — Qui, )(E — t")l/z
=0
where jerfc 0 = 1/4/7 was used.

The above solutions are exact solutions of the transformed
equations which are an approximate representation of the original
steady-state problem. The only unknown in the above solutions is
the transient variable ¢ —¢; . Therefore, determination of ¢ — ts
in terms of the known steady-state variables would render these
solutions as approximate solutions to the original problem in the
z — y plane.

Consider the case of uniform surface heat flux for 0 < z <
1. Although exact similarity solutions are available (Sparrow
and Gregg, 1956), the case will be examined in the following. The
formulations derived for the uniform surface condition will provide
the basis upon which the derivation can be extended to the general
situation involving multi-step changes.

Substituting the first term of equation (14) into equation (7)
and evaluating the integrals with § — co leads to

2v/a
T.= 30 ar)

¢ (Pr) ———‘/ng fuo 43/2

Ue(z) = (18)

where C(Pr) is a function of the Prandt] number. Determination
of this function is not necessary, and it is sufficient to note that
this coefficient is a constant for a given fluid.

The above equation is differentiated after taking a 2/3 power of
both sides. The resulting expression, after substituting equation
(8) for dt and separating the variables, is

2/3
u, du?/? = (gﬂ/—*"‘kfmqﬁ) dz (19)
Upon integration, this yields
2/5 3/5
ue(z) = (M(f_ﬂt@) (52_.1) (20)

By substituting equation (20) into equation (9) for u.(z) and
evaluating the integral, it can be shown that
3 =z
T 2u(z)

Now, with u.(z) from equation (20), the transient variable ¢ is
completely determined in terms of the steady-state variables ex-

t (21)




cept the value of ;.
The surface temperature variation for the iso-flux case is rewrit-
ten from equation (17) with & = 0:

T, = 2\/52%,0

By substituting equation (21) for ¢ into the above equation, the
local Nusselt number can be expressed as

(22)

Nu, = Co(Pr) Rel/? (23)

where C,(Pr) is another function of the Prandtl number, and Re,
denotes the Reynolds number defined based on u.(z) as

_ T
T v

Note that the form of the above heat transfer expression is
identical to that of the forced convection result. It reveals that
u.(z) is analogous to the externally induced free stream velocity
in the forced convection study. By substituting equation (20) for
u,, equation (23) becomes

Re. (24)

Nu, = C(Pr)Gr:'/* (25)

where C(Pr) consists of C;(Pr) and C;(Pr). This is again identi-
cal to the form of known results for laminar natural convection
heat transfer from an iso-flux surface. The Prandtl number func-
tion C(Pr) can be determined by conserving the momentum and
energy over the boundary layer (Lee, 1988) or simply by compar-
ing the above heat transfer result with known data. Since the
prime objective of the present investigation is to seek a simple so-
lution that requires the least computational effort, the latter will
be adopted to determine C(Pr). For example, by comparing equa-
tion (25) with the correlation equation proposed by Fujii and Fujii
(1976), it can be found that

P!'2 1/5
C(Pr) = { ——=———
(Pr) (4 + 9vPr + 10 Pr)

With the use of equations (20), (21) and (26), the temperature
solution for iso-flux cases can now be expressed completely in terms
of the known variables and coefficient. There follows

N

(26)

T= qu ierfc 7o (27)
with c
_L a5y
Mo = ﬁGrz z (28)

The analysis so far has demonstrated that the correct heat
transfer relationship can be obtained for iso-flux cases from the
linearized differential equations by properly determining the ef-
fective flow velocity. An extension of the above derivations for
problems involving multiple step changes in surface heat flux is
outlined as follows.

Recall that, in linearizing the governing differential equations,
the effective flow velocity u.(z) was introduced as an input pa-
rameter to the equations and, therefore, it needs to be determined
based on information external to the differential equations. In
the above example with a uniform heat-flux surface, this was ac-
complished by equating the integral forms of the equations. It
resulted in equation (19) which was subsequently integrated to
obtain equation (20) for u.(z).
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In terms of the total heat input @, into the fluid, equation
(20) can be rewritten as

u? x QY328 (29)

where

Qu=[ w©d (30)

Equation (29) reveals that the effective kinetic energy of the fluid
flow at an arbitrary location z is related to the total heat dissipa-
tion into the fluid from the leading edge of the plate to the location
of interest.

An assumption is made such that the relationship indicated
by equation {29) between the effective kinetic energy of the flow
and the cumulative heat input into the fluid is not affected by
the existence of a variable heat flux at the surface. Therefore,
the effective flow velocity u.(z) for the cases with an arbitrarily
varying gu(z) may be written in a form that is similar to equation

(20):
— \2/5 3/s
uy(z) = (Cl \/agﬂ QW) (5_1") (31)
k 2
where G, is the average surface heat flux defined as
— v Qu
Bue) = 2 (32)

As was previously indicated in the case with an iso-flux plate,
the velocity defined by equation (31) is analogous to the induced
free stream velocity in the forced convection analysis. In the fol-
lowing, the effect that each isolated step jump in surface heat
flux has on the overall temperature solution and the heat transfer
characteristics of the plate will be determined.

Consider the flow over a vertical plate which experiences a sin-
gle step jump in surface heat flux Agu; = ¢u; —qu;_, at some down-
stream location z = z;. This is a classical problem that appears
in the study of forced convection heat transfer from a flat plate
which has an unheated starting length in the wake of a hydrody-
namic boundary layer as shown in Fig. 1c. The primary momen-
tum boundary layer growth denoted by & begins at the leading
edge whereas the thermal boundary layer development begins at
¢ = z;. Through use of an integral boundary layer solution (Spar-
row and Lin, 1965) it can be shown that the delay factor x which
accounts for the unheated starting-length effect can be obtained
through the ratio of the thermal-to-hydrodynamic boundary layer
thicknesses. It is found that

]
zi
=(1-=
=(-3)

with b = 1/3 for the externally induced laminar flow of a high
Prandt] number fluid.

The above delay factor is obtained by regarding the entire flow
over the heated section as externally induced. Therefore, the effect
that the buoyant force due to the introduction of the step heating
over the surface has on the fluid flow within the i-th boundary
layer is not accounted for in the derivation of the delay factor.
Since the value of b depends on the type of flow it is reasonable
to assume that b should be modified in order to incorporate this
buoyancy effect into the delay factor. By considering the limiting
values of the Prandtl number and the definition of the parameter ¢
given by equation (9), it is found that the value of b must lie in the
range of 1/3 < b < 1/2. An examination of heat transfer results

(33)
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confirms that, for air (Pr ~ 0.7), b = 1/3 + 1/10 results in the
best agreement with existing data obtained by various techniques
for different surface heat-flux distributions.

Recall that the delay factor is proportional to the ratio of the
thermal-to-hydrodynamic boundary layer thicknesses. Also, by
noting from equation (16) that the growth of the boundary layer
thickness varies with the square root of the transient variable, it

can be written that

t -t

X= Vi (34)
Upon equating equations (33) and (34), one finds
i\ ®
t—t‘-=t(l—;) (35)

Here, the parameter ¢ is related to the growth of the primary
boundary layer. By substituting equation (21) for t with equation
(31) for u,(z), the above equation becomes

2/5 N2
t_t,:(é__’w—_) (1-%)
2 Cl\/agﬁ 9w z

with b=1/3 + 1/10 as discussed previously.

Using equation (36) for ¢ — ¢;, the parameters associated with
the temperature solution given by equation (13) are completely
determined. The steady-state temperature solution becomes

(36)

_ Jrz P 2\ 1/3+1/10
T= cra g(qw; ~ Quicy) (1 - ;) lerfen;  (37)
where c (1/3+1/10)
— «1/5 T\~

and Gr;, is the modified Grashof number based on the average sur-
face heat flux §,,. The complementary error function appearing in
the solution can be evaluated by means of a numerical integration
or by using a rational approximation (Abramowitz and Stegun,
1972) with a high degree of accuracy.

The local wall temperature over the &-th step for z, < z <
Zxp1 becomes

T z; ) 1/3+1/10

ara How e (13

where C can be evaluated from equation (26). The above solutions
include the iso-flux plate solutions for which & = 0 and Gr, = Gr’.

Tw(z) = 39)

x

COMPARISONS AND DISCUSSIONS

Many simplifying approximations, such as the linearization of
the governing differential equations and the assumption of a non-
variant proportionality relationship between the effective kinetic
energy of the flow and the total heat dissipation, were introduced
into the development of the model. Since the present solutions are
based on a novel, approximate method, a major portion of this
section will be devoted to comparisons with other data obtained
by using various techniques. It is to be recalled that the intent of
the study was to develop the simplest possible solutions that are
sufficiently accurate for practical uses in predicting temperature
distributions and surface heat transfer characteristics. As with
other approximate solutions developed in the past, the use of the
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present solutions can only be validated by comparing the results
with those that are obtained by employing more exact methods.

To examine the solutions for step changes in surface heat flux, a
case in air (Pr = 0.7) with a number of strip heat sources mounted
flush with the surface of an adiabatic plate is considered. A three-
dimensional plot for the dimensionless temperature distribution in
the fluid is presented in Fig. 2. All five sources shown in this figure
have a uniform surface heat flux of equal strength and size, with
non-source spaces equal to the source size; g, is positive for i = 0
or even, and is 0 for i = odd; and all step sizes (z;;, — ;) fori = 0
to 9 are identical. The dimensionless temperature § appearing in
the figure is defined as

T
o qu:cl/kGr;l (40)
and £ = z/z,.

Since the boundary layer approximations assume no thermal
energy transport by diffusion along the z-direction, the tempera-
ture distributions shown in Fig. 2 would be less valid in the imme-
diate vicinity of a step change where large temperature gradients
are observed. Jaluria, using finite difference methods, solved the
boundary layer equations (Jaluria, 1982) as well as the full ellip-
tic equations (Jaluria, 1985) and presented the effects that the
boundary layer approximations have on both surface temperature
and maximum' velocity variations for different modified Grashof
numbers. The studies revealed, as expected, that the local peak
temperatures at the locations of a step change dampens as the
value of the modified Grashof number decreases.

From equation (39), the dimensionless surface temperature can
be written as

61/5 5
c—:ul/S ;

& 1/3+1/10

o = - (1-4) ()
=0

where ¢}, = 9u/qu, and T, = 3,/ 9wy This equation is evaluated
for the previous case with five heat sources. As can be seen from
Fig. 3, the results are in excellent agreement with the numerical
data of STAN7. STANT is a finite difference code developed for
solving the boundary layer momentum and energy equations for
laminar and turbulent flows over or inside a body of revolution,
and it is an abridged version of program STAN5 (Crawford and
Kays, 1976).
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Figure 2 : Dimensionless temperature distribution due to alternating
positive uniform and zero surface heat fluxes of equal size for Pr =
0.7.
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Figure 3 : Comparison of dimensionless wall temperature variation
due to alternating positive uniform and zero surface heat fluxes of
equal size for Pr = 0.7.

Figure 4 presents a similar situation with two identical iso-flux
heat sources for Pr = 0.7 showing the effect of the source spacings
on the wall temperature variations. One source is at the lead-
ing edge of the plate and the other is located downstream. The
center-to-center source distance is equal to ¢, times the source
width. Three different source spacings are examined. Compar-
isons with the numerical data of Jaluria (1982) and STANT show
good agreement, particularly in the trend of the local peak tem-
peratures. Small deviations are observed in the numerical data
of Jaluria who solved the boundary layer equations using finite
difference methods. Jaluria’s numerical prediction overestimates
the peak temperature over the first source by approximately 5%
when it is compared to the present solution. The present solution
is identical, by choice, to the correlation equation of Fujii and Fujii
(1976) for £ < 1.

An examination of Fig. 4 also reveals the effects of the non-
linearity of natural convection. Although the two sources are iden-
tical, dissipating the same amount of heat into the fluid over the
same width, the peak temperature over the downstream source can
become lower than that of the upstream source. The wall temper-
ature due solely to the first source decreases asymptotically to the
ambient fluid temperature as £ increases, and the fluid tempera-
ture excess within the boundary layer remains positive. The posi-
tive temperature excess results in a positive buoyant force which,
in turn, results in a perpetual increase in the overall downstream
flow velocity. Despite the fact that the fluid flowing towards the
downstream source is at a temperature higher than the ambient
temperature, its increased flow velocity enhances the heat transfer
from the second source. The result is that the downstream source
temperature becomes lower as the source spacing increases. -

For problems with two heat sources of uniform but different
fluxes on an adiabatic plate (qu, # qu, 2nd g, = 0), a ratio of the
average heat transfer coefficient of the downstream to upstream
sources can be defined as

é2+1 dé‘
A

= Quy ldé'
o By

(42)
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Figure 4 : Comparison of dimensionless wall temperature variations
due to two identical thermal sources of uniform heat flux on an adia-
batic plate with different source spacings for Pr = 0.7.

where the integral in the denominator can be integrated to yield
5C/4, and equation (41) can be used for §,, in the numerical in-
tegration of the numerator. This ratio is evaluated as a function
of & for ¢, = 0.1, 0.2, 1 and 2, and Pr = 0.7. The results are
plotted in Fig. 5, and compared again with the numerical data of
Jaluria (1982) and STANT7. Considering that Jaluria (1982) also
solved the boundary layer equations, the agreement between the
three sets of data is poor. Better agreement of the present model is
obtained, however, when it was compared with STAN7, especially
for small flux ratios.

When the surface heat flux of the downstream source is equal
to that of the upstream source (¢, = 1) and the space between
the two sources approaches zero (§; — 1), the exact solution to the
above heat transfer ratio can be found. This case is nothing more
than an iso-flux case with twice the source width. The uniform
flux solution can be used over both sources, and the exact heat
transfer ratio can be calculated as the constant value 0.741. As
can be seen from Fig. 5, the present model and STAN7 correctly
predict the value for this situation.

The rest of this section examines the cases with a continuous
surface heat-flux variation. To generalize the solutions to account
for any arbitrary variation of g,(z), which may include a sec-
tionally continuous and varying function, the summation in the
solutions may be replaced by a Stieltjes integral. For example,
the surface temperature solution given by equation (39) can be
generalized as

z

Tu(z) e I, (43)
where -
= [ x(¢ ) dau(c) (44)
with
¢ 1/3+1/10
X6 a=(1-) (43)

I, defined by equation (44) is the Stieltjes integral. It includes the
ordinary Riemann integral plus contributions which occur when-
ever q,(z) has a discontinuity:
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Figure 5 : Comparison of heat transfer coefficient with two thermal
sources of uniform heat flux on an adiabatic plate showing the effects
of flux ratios and source spacing for Pr = 0.7.

L= [0 0 28 i 4 53¢, iauleh) - auler)] (46)

Here, the summation represents all jumps in ¢, at z = ;.

While the above integral form of the solutions is general, it
is almost always the case that numerical computations must be
carried out in evaluating the integrals. During the course of the
numerical evaluation, the integral will be replaced by a summa-
tion reducing the solution back to the summation form given by
equation (39). Therefore, it is apparent that equation (39) can
be used effectively also for the cases with an arbitrarily varying
9u(z).

Surface heat fluxes in the form of a linearly increasing or de-
creasing function and exponentially increasing surface heat flux
are selected as test cases. They are given by

W@ _ 2
T lE (47)
and
2l2) _ potes (48)

e
where g, and z, are arbitrary heat-flux and length scales, respec-
tively.

A prescribed surface heat-flux variation is discretized and re-
placed by step changes in uniform surface heat flux. In this study,
an equal spacing is used in the discretization and the heat-flux
value at the mid-location of each element is used to represent the
uniform heat flux over the element. Experimental computations
were carried out to observe the effect of discretization, and it was
found that the computed values at fixed locations are insensitive
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Figure 6 : Comparison of dimensionless wall temperature variations

with exponentially and linearly increasing surface heat fluxes for Pr =
0.7.

to the element size. Nevertheless, a sufficiently large number of
elemnents is used in order to generate smooth plots for the surface
temperature distributions.

Figure 6 compares the results of the dimensionless wall tem-
perature for the linearly and exponentially increasing surface heat
flux, and Fig. 7 compares the linearly decreasing surface heat
flux with those obtained by using the local similarity, local non-
similarity and a difference-differential numerical methods (Kao et

% =qa (1l ~ z/ma)
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Figure 7 : Comparison of dimensionless wall temperature variations
with linearly decreasing surface heat flux for Pr = 0.7.
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al., 1977). Also included in Fig. 7 is the numerical data of Yang et
al. (1982). The data of Kao et al. and those of Yang et al. are
obtained by digitizing the plots presented in their papers and
converting the variables to the present forms. Although Yang et
al. (1982) also reported numerical solutions for the cases presented
in Fig. 6, the results are virtually identical to the numerical data
of Kao et al. (1977) and are not included in Fig. 6 for clarity. Fig-
ure 6 exhibits an excellent agreement amongst all methods with
small differences between the local similarity solutions and others.
As can be seen from Fig. 6, the present predictions are indistin-
guishable from the results of numerical and local non-similarity
methods. Figure 7 reveals the possibility of diverging solutions
that can result from both local similarity and local non-similarity
methods, whereas the present solution continues to maintain the
close agreement with the numerical solutions of Kao et al. (1977)
and Yang et al. {1982), which are reported up to z/z, = 0.643.

SUMMARY AND CONCLUSIONS

An approximate method of determining the temperature dis-
tributions in laminar free convection along a vertical plate with
an arbitrarily specified surface heat flux has been described. This
new technique is based on a transformation of the problem into
a linearized form by introducing an effective flow velocity which
is determined by relating the effective kinetic energy of the fluid
flow to the total heat dissipation into the fluid. The effective flow
velocity determined in this manner is found to be analogous to
an externally induced flow velocity. Therefore, by using the inte-
gral solution technique developed for forced convection problems,
the delay factor that accounts for the effects of an incremental
step change in surface heat flux on the temperature solution is ob-
tained. The resulting model is a simple, explicit expression which
only requires a summation of a finite number of algebraic terms
for computing surface temperature distributions as a function of
downstream location. The present solutions are in excellent agree-
ment with other data obtained for air and different surface thermal
conditions.

The same methodology described herein for heat-flux specified
problems can also be applied for temperature specified problems.
Such a study has been carried out by the current authors (Lee and
Yovanovich, 1991b) and an equally simple and accurate expression
has been obtained for predicting heat-flux distributions of a verti-
cal plate with an arbitrary temperature variation prescribed along
the surface.
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