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ABSTRACT

A method is presented to linearize the boundary-layer
momentum and thermal energy equations. This is accom-
plished by the introduction of effective momentum and
" thermal-transport velocities which are related to the free-
stream velocity through a constant parameter which in the
case of the thermal energy equation is also dependent on the
Prandt] number.  Two methods are proposed for the esti-
mation of the parameters: i) matching wall shear stress and
heat flux, and ii) conserving momentum and enthalpy fluxes

_across the respective boundary-layers. The first method gives
approximate solutions which are more accurate than those
of the second method. The approximate analytic solutions
are in closed form; they are simple and quite accurate when
compared with the boundary-layer solutions of Blasius and
Pohlhausen.

NOMENCLATURE

c,cT = momentum and thermal parameters,
Eqgs. (3) and (22)

f(Pr),F(Pr) = Prandtl functions, Eqs. (23) and (33)

k = thermal conductivity

Nu; = local Nusselt number, Eq. (32)

Pr = Prandtl number

q = heat flux

Re, = local Reynolds number, Uz /v

t = time scale

T = temperature

u,v = velocities in z and y directions

U = free-stream velocity

Ue, U, = effective momentum and thermal-transport
velocities

u* = dimensionless u—velocity, u/Us

z,y = coordinates parallel and normal to the wall

Greek Symbols

o = thermal diffusivity
§,6r = momentum and thermal boundary-layer thicknesses
7,nr = momentum and thermal similarity variables,

Egs. (13) and (25)
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v = kinematic viscosity
r,7* = dimensional and dimensionless shear stresses, Eq.(15)
¢ = dimensionless temperature, Eq. (24)
¥ = stream function, Eq. (36)
Subscripts
0 = wall condition
o0 = free-stream condition

INTRODUCTION

Since Blasius [1] presented his solution for steady, incom-
pressible flow along a semi-infinite flat plate, many attempts
have been made to find accurate approximate analytical solu-
tions. Lord Rayleigh [2] first suggested that the Blasius flow
could be approximated by the solution first given by Stokes
[3] for an infinite plate which at ¢t = 0 is suddenly moved
in its own plane with a constant velocity U through a fluid
initially at rest.

The solution for the Stokes flow is analogous to the solu-
tion of transient heat diffusion in a homogeneous semi-infinite
solid which is initially at some constant temperature and
whose free surface is suddenly raised to a fixed higher tem-
perature.

Rayleigh proposed, as a first approximation, that the time
t in the Stokes flow could be equated to the distance from the
leading edge z and the plate velocity U, i.e., t = z/U. This
gives for the approximate Blasius flow a velocity profile which
gives for the dimensionless wall shear the constant 1//7 =
0.564 which is significantly greater than the Blasius value of
0.332.

The Rayleigh approximation overestimates the convection
effects; therefore, its prediction of the boundary-layer growth
is too small, and its estimate of the wall shear is too large.

The time scale suggested by Rayleigh is too small, and
it was observed that with t = z/(0.346 U) (see Rosenhead
[4]) the Rayleigh approximation would give the Blasius wall
shear exactly. No explanation or proof was given for this ob-
servation then, and it appears that it has not been pursued
(see Churchill [5]). Other approximate analytic methods have
been presented (see Schetz {6-8}) which yield less than satis-
factory results when applied to the Blasius flow problem.

One objective of this paper is to pursue the observation
noted above and to present the development of a novel ap-
proximate solution for Blasius flow which is based on a lin-




earization of the inertia terms of the momentum equation by
the introduction of the concept of an effective momentum-
transport velocity u, parallel to the plate. This effective
momentum-transport velocity will be shown to be a constant
fraction of the free-stream velocity U.

A second objective of this paper is to introduce the con-
cept of an effective enthalpy-transport velocity to find an
approximate solution for the Pohlhausen {10] solution of the
energy equation.

An approximate analytic solution of the energy boundary-
layer equation for laminar forced convection heat transfer
from an isothermal plate will be presented and compared
with the solution of Pohlhausen [10].

The solutions of Blasius and Pohlhausen require simi-
larity parameters to transform the momentum and energy
boundary-layer equations into two coupled ordinary differ-
ential equations: a third-order equation for momentum and
a second-order equation for energy (see Kays and Crawford
[11], Burmeister [12], Schetz [13], Cebeci and Bradshaw [14],
and Bejan [15]).

Numerical solutions of the coupled ordinary differential
equations are required to obtain velocity and temperature
profiles, and wall shear and wall heat flux.

In sharp contrast with the similarity solutions of Blasius
and Pohlhausen the proposed method provides decoupled
closed-form expressions for the velocity and temperature pro-
files. The wall shear and the wall heat flux can be determined
easily and quite accurately. :

LINEARIZATION AND SOLUTION OF BLASIUS
FLOW

The laminar boundary-layer momentum equation is ap-
proximated as

0%u :
U = Vs
“fr u@y’ )
where u, denotes the effective boundary-layer transport ve-
locity parallel to the plate. The definition of u,, that is exact
in the integral form of the momentum equation, can be ob-
tained as

s
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where § represents the boundary-layer thickness and U, is
the free-stream velocity. It can also be shown that u, is
constant and is linearly proportional to U:

U
=7 ®)

The constant C is defined by Eq. (3), and its numerical
value can be determined by matching wall shear or momen-
tum flux.

The linearized convective term on the left side of Eq. (1)
can be transformed further by introducing a new variable ¢
such that

=2
Ue

(4)

or, since u,. is assumed to be constant, we obtain:

t=—

Ue

(5)

The parameter ¢ can be viewed as the effective residence time
of the fluid flow from the leading edge of the plate to the
downstream location z.

With the introduction of Eq. (5) into Eq. (1) it becomes

R (6)
Introducing the normalized velocity

u* =

u
— 7
i ™
and the similarity parameter

0= 50 (8)

Eq. (1) reduces to the well-known second-order ordinary
differential equation:

d?u* du*
-— _—= < 9
e +217d77 0 0<np< 0 9)
with Dirichlet boundary conditions:
at =0, u"=0 (10)
as p—=oo0, u' =1 (11)
The solution is
u" =erf 5 (12) .

with the similarity parameter expressed in terms of the lo-
cal Reynolds number Re, and the as yet unknown effective
velocity parameter C
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where
Re, = L:’"’ (14)

The dimensionless local wall shear stress (see Kays and
Crawford {11}, Burmeister {12}, Schetz [13], Cebeci and Brad-
shaw [14], and Bejan [15]) is obtained directly from the solu-
tion: .
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The value of C can be determined in the following two
ways; one may compare Eq. (15) with the so-called ezact
solution of Blasius:

7o =0.332 Rel/? (16)

and find

C = 2.887 amn
which is in agreement with the observation reported in Rosen-
head [4]. Or, from the definition of the effective velocity, Eq.
(2), with the approximate solution given by Eq. (12), one
may obtain another estimate of the required parameter:

(18)

The dimensionless velocity profile given by Eq. (12) with
C given by Eq. (17) yields the profile in such a way that the
shear at the surface becomes identical to the Blasius solu-
tion, whereas Eq. (12) with C given by Eq. (18) conserves
the momentum flux across the boundary layer.

C=12414

COMPARISON WITH BLASIUS SOLUTION
AND EXPERIMENT

The approximate analytic solutions with the two values of
C given by either Eq. (17) or Eq. (18) are compared with the
experimental data of Liepmann [9] in Figure 1 for the range
0.85 x 108 < Re, < 1.24 x 10%. Also shown in the figure
is the Blasius solution and the agreement among the results
is seen to be excellent with C = 2.887 and very good with

C = 2.414 over the full range of the parameter (y/z) Rel/%.

The value C = 2.414 gives a dimensionless wall shear 75 =
0.363 which is approximately 9.4% larger than the Blasius
value.
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Figure 1 : Comparison of dimensionless velocity distributions.

LINEARIZATION AND SOLUTION OF ENERGY
EQUATION

Following the method described above of linearizing the
momentum equation, the energy boundary-layer equation is
replaced by the linearized equation: ‘

ar &*T
"Z‘E = QW (19)
in which the effective enthalpy-transport velocity parallel to
the plate is denoted as uZ. This velocity is related to the
constant free-stream velocity U, through the Prandtl num-
ber, i.e., ul = U,f(Pr) where f(Pr) is some function of
the Prandtl number to be determined by scaling analysis for
small and large values of the Prandtl number.

d rér
. /0 w(Too — T)dy
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EA (Tco - T)dy

u

(20)

where 61 represents the thermal boundary-layer thickness
and T, is the free-stream temperature. It can also be shown
through simple scaling analysis of the energy equation that
the effective enthalpy-transport velocity u? is constant and
linearly proportional to the free-stream velocity Ue:

Scaling analysis [15] is employed to obtain the relation-
ships at the extreme values of Pr where it can be shown that
as

Pr—0, Ul = Uy (21)
and as U
Pr — oo, ul — --——-CTP":J/3 (22)

The interpolation method of Churchill and Usagi [16] is used
to obtain the following blended expression which is valid for
all values of Pr:

1

f(Pr)= L1 (CT Py

0<Pr<oeoo (23)

Hereafter the proposed solution procedure is simple and
straight-forward. Introducing the dimensionless temperature

T-Te

¢=T T, (24)

and the thermal energy equation similarity parameter nr
which can be shown to be the product of the momentum
equation similarity parameter n and another function of the
Prandtl number which accounts for the effective enthalpy-
transport velocity defined for the energy equation boundary-
layer,

nr = %%\/ﬁ;\/ﬁ f(Pr)=mn\/CPr f(Pr)  (25)

Following the transformation method above the linearized en-




ergy equation is transformed into the following second-order
ordinary differential equation:

) d¢
—_— —_——= <
o + 2an7]T 0 0<r <0 (26)
with Dirichlet boundary conditions:
and
nr — oo, $—0 (28)
The solution of the above equation is
¢ = erfc nr (29)
The local wall heat flux is defined as
d¢ onr
= —k(To - Too)o— —— 30
0=-HB-T)zh 30| (30)
leads to
1 1 o= o=
Jo = ﬁk(Ta el Too)-; Re,, Pr f(Pr) (31)

The dimensionless local wall heat flux or local Nusselt num-
ber is written in the form:

JoZ

S T - T

= Rel/? F(Pr) (32)

with the Prandtl number function:

/2
Pr -
F(Pr)= 0<Pr<
( ) [ﬂ’ [1 + (CTPT1/3)2]1/2] srr [o0]

(33)

The extreme values of F(Pr) are
Pr -0, F(Pr) — %VA Pr (34)

and
Pr — o F(Pr)— 1 Pri/3 (35)
’ xCT

Two methods can be used to find values of the thermal
parameter CT. The first method compares the approximate
and the so-called exact dimensionless wall heat flux at the
extreme value Pr — co which gives CT = 2.77. The second
method is based on an enthalpy flux balance across the ther-
mal boundary layer; using the approximate solutjons for the
velocity and temperature distributions, Eqs. (12) and (29),

/" and the definition of ul, Eq. (20), gives the second estimate

CT =2.13.

COMPARISON WITH SOLUTION OF
POHLHAUSEN

The asymptotes given above for F(Pr) are in complete
agreement with the results of Pohlhausen {10]. Also, if Pr =
1, P(Pr) = 0.329 which is approximately 1 % below the
numerical value given by Pohihausen [10].

The approximate analytic solution is compared with the
solution of Pohlhausen as presented in Kays and Crawford
[11):

Rell?

h \/5/: ezp (—Pr /Omd) dm) dn,

where 7, and 4 are the Blasius similarity variable and stream
function, respectively.

N

(36)

The reciprocal of the complex integral appearing in the
denominator of the Pohlhausen solution is the F(Pr) ob-
tained by the proposed method. Obviously, the F(Pr) ex-
pression given by Eq. (33) is significantly simpler than that
of Eq. (36).

In Figure 2 the temperature profiles for three values of
Pr are plotted and compared with the Pohlhausen similarity
solution; the agreement is seen to be very good everywhere
and excellent near the wall.

The parameters and solutions of Blasius and Pohlhausen
and those of the present approximate method are compared
in Table 1. The complexity of the Blasius and Pohlhausen so-
lutions relative to the present approximate solutions is clearly
seen. The so-called exact solutions require extensive numer-
ical integrations while the approximate solutions require the
computation of the error function or its complement.

1.0
| Pohlhausen Solution
~ Present with CT = 2.77
0.8 - \ N ~ — = Present with CT = 2.13
8|8 A
Sl& s ) N
| [ \ X
& hQ \ \\ A
\ \ N
Il 0.4 4 \ N\ SPr=01
\ S
\ N ~
\ N0 N
0.2 \ NS >~
10.0 \\ X~ - =
S~
X~ =~ -
0.0 T =3 T T = v
0 2 4 6 8
1/2
2 Rez/
T

Figure 2 : Comparison of dimensionless temperature distribu-
tions for various Prandtl numbers.




Table 1 : Comparison of Blasius and Pohlhausen methods and present method.

Blasius and Pohlhausen

Present

Similarity y \/E:
T=2zV 2

1
77-—\/%"770

Oy +/Re,

Variables Pr f(Pr)
=[5
&2 d?u* du*®
iU =0
ODE’s dn; dng " g
d*¢ d¢ ¢ . dé
dn? +P d}dﬂo g " My
d
- od f
u n. erl 7
v 1 [ dy \/E -
U; Re, —5 (7]0%: - ¢) = (1 e )
ow_=z 1 &% ! e

8¢ = _ exp (—Pr /0%1/) dno>

8y /Re,

CONCLUDING REMARKS

A novel method is proposed of linearizing the boundary-
layer momentum and energy equations. This is accomplished
by the introduction of effective momentum-transport and
enthalpy-transport velocities which are assumed to be con-
stant across the momentum and thermal boundary-layers re-
spectively. Introducing time scales which are related to the
distance from the leading edge to the local position and the
effective velocities, permits one to transform the linearized
momentum and energy equations into identical parabolic equa-
tions whose solutions can be expressed in closed form in terms
of the error function or its complement.

The approximate analytic solutions require a single pa-
rameter which relates the effective momentum and thermal-
transport velocities to the free-stream velocity. Two methods

are proposed for estimating the parameter: i) matching the
wall shear or heat flux with the exact solutions, or ii) conserv-
ing the momentum and enthalpy fluxes across the respective
boundary-layers. The first method provides a value of the
parameter which gives approximate solutions which are in
excellent agreement with the exact solutions. The second
method provides a value of the parameter which overesti-
mates the wall shear stress and wall heat flux, but gives good
agreement with the dimensionless velocity and temperature
distributions. '
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