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ABSTRACT

The conventional correlation equations for forced and
natural convection boundary-layer flows over isothermal
flat plates are shown to collapse into a single simple ex-
pression which directly relates the dimensionless wall tem-
perature excess to a new Prandtl number function which
is applicable for the full range of the Prandtl number from
zero to infinity. .

The dimensionless wall temperature excess is defined
with respect to the unknown area-mean wall heat fiux, the
thermal conductivity of the fiuid, the given wall tempera-
ture excess and a new length scale which is related to the
plate length, the fluid thermal diffusivity and the maxi-
mum fluid velocity within the respective boundary layers.

The conventional forced and natural convection di-
mensionless groups: Nusselt, Reynolds, Peclet, Grashof,
Rayleigh and Boussinesq numbers do not appear in the
proposed simple general correlation equation.

The new formulation allows the forced and natural con-
vection heat transfer results to appear on the same graph
as dimensionless temperature excess versus Prandlt num-
ber functions. This shows that the two physical phenomena
are closely related; this is not apparent from the conven-
tional correlation equations.

NOMENCLATURE
Boy - Boussinesq number, gf86yL3/a?
Co - constant at Pr — 0
Gry - Grashof number, gf86,L%/v?
g - gravitational acceleration, m/s?
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h - heat transfer coefficient, W/m?K

k - thermal conductivity, W/mK

L - plate length, m

Per - Peclet number, LUy /a

Pr - Prandtl number, v/a

do - area-mean wall heat flux, W/m?

Q - heat flow rate, W

Rey - Reynolds number, LU, /v

Rar - Rayleigh number, g86,L3/(av)

Te - wall temperature, °C

Too - free stream temperature, °C

Ueo - freestream fluid velocity, m/s

Umaez - maximum fluid velocity, m/s

Greek Symbols

a - thermal diffusivity = k; /(p - ¢p), m?/s

) - hydrodynamic boundary-layer thickness, m

b7 - thermal boundary-layer thickness, m

A - conduction thickness, m

v - kinematic viscosity, m?/s

o* - dimensionless temperature excess, k_ﬂo 1/ Lo
q Umaz

6o - wall temperature excess, Ty — Too

Subscripts

I - fluid

fe - forced convection

0 - freestream value or value at infinite limit

L - based on plate length

ne - natural convection

0 - wall-based value or value at zero limit

T - thermal

maz - maximum




INTRODUCTION

Historically the forced and natural convection mod-
els, theory and correlation equations are kept separate,
and even today most heat transfer texts!—%%1%12 and
handbooks!! present the respective material in separate
chapters. On rare occasions a researcher may use the forced
convection results to develop an approximate correlation
equation for natural convection. The recently published
heat transfer text by Mills!* presents forced and natural
convection fundamentals and correlation equations in one
chapter; however, the respective material is placed in sep-
arate sections.

The forced and natural convection results are presented
in such a way that the close relationship between the two
solutions are obscured by the various dimensionless param-
eters (numbers) used to present the final results. The ac-
tual physics of the flow and the true heat transfer char-
acteristics are hidden behind the numerous dimensionless
groups which have been introduced into the correlation
equations over many decades.

Laminar forced and natural convection heat transfer
from isothermal flat plates are characterized by means of
relationships between several dimensionless numbers: Nus-
selt, Reynolds, Prandtl, Peclet, Grashof, Rayleigh and
Boussinesq!~12.

The Reynolds and Grashof numbers are hydrody-
namic parameters which appear in the forced-convection
and buoyancy-induced momentum equations respectively,
while the Prandtl number is a fluid property parameter.

The Peclet and Boussinesq numbers appear in the solu-
tions to the forced and natural convection energy equations
rexpectively. They are frequently defined as products of
the hydrodynamic parameters and the Prandtl number.

The Rayleigh number is the product of the Grashof and
Prandtl numbers; it does not appear intrinsically in the
energy. equation or its solution; but, it is always used in
the natural convection correlation equations.

The objectives of this study are: i) to reveal the com-
mon base of the forced and natural convection results for
the asymptotic limits of large and small Prandtl numbers:
Pr — oo and Pr — 0 respectively, and ii) to develop
a general expression which directly relates the area-mean
wall heat flux to the wall temperature excess, and it will be
valid for the full range of Prandtl number: 0 < Pr < oo.

Also the general results will be presented in a form which
will clearly show the important length scales and thermo-
physical parameters which control the advection-diffusion
processes under forced and natural convection flows.

REVIEW OF FORCED AND NATURAL CON-
VECTION CORRELATIONS

Laminar forced and natural convection heat transfer

from isothermal flat plates have been the subject of a very
large number of analytical, experimental and numerical in-
vestigations.

The first analytical works of Blasius and Pohlhausen who
solved the forced convection boundary-layer momentum
and energy equations have led to numerous other analyti-
cal and experimental studies which are described in some
detail in the many heat transfer texts which are currently
available as well as some review articles.

The subject of laminar boundary-layer buoyancy-
mduced flow over an vertical isothermal flat plate has a
longer history beginning with the approximate analytical
work of Lorenz® which was followed some fifty years later
by a more complete experimental and analytical investi-
gation by Schmidt!?. Subsequently more analytical, ex-
perimental and numerical results were reported, and they
are found in various review articles, handbooks and text
books.

The correlation equations for both forced and natural
convection posses certain common features, i.e., the di-
mensionless area-mean wall heat flux is called the Nusselt
number which is related to some independent flow param-
eter such as the Reynolds number in forced convection and
the Grashof number in buoyancy-induced flow. For closure
the respective correlation equations also introduce the im-
portant fluid parameter, Pr, either alone or in some com-
bination with the flow parameters. For example, in forced
convection the Peclet number, Pe = RePr is frequently
introduced into correlation equations, especially for heat
transfer into very small Prandtl number fluids Pr << 1
such as liquid metals.

In natural convection the correlation equations are often
presented in terms of the following products of the Grashof
and Prandtl numbers: GrPr and GrPr?, These products
arise naturally from scale analysis at the limits: Pr — oo
and Pr — 0, and the are sometimes denoted as GrPr = Ra
and GrPr? = RaPr or GrPr? = Bo.

The many correlation equations reported in the heat
transfer texts for both forced and natural convection ap-
pear in different forms and are usually developed for a
particular range of the Prandtl number. The correlation
equations based on integral methods or experimental data
are approximate and not applicable over the full range of
Prandtl number.

LeFevre!® was the first investigator to develop a general
correlation equation valid over the full range of Prandtl
number. It was based on the exact solutions obtained for
the limits: Pr — 0 and Pr — oo. Subsequently Ede!?
proposed a similar, slightly less accurate correlation equa-
tion; however he rounded the correlation coefficients to the
nearest integers.

Churchill”® proposed an alternate form of the correla-
tion equation which is also based on the bdlending of the
asymptotic analytic solutions. This form is most frequently
quoted in the heat transfer texts; therefore it will be con-
sidered in this work.




Churchill®® has also proposed a general correlation equa-
tion for forced convection. Since it is the most frequently
quoted correlation equation in the heat transfer texts, it
will also be considered in this work.

Forced Convection Correlation Equation

Churchill”® has proposed the following accurate correla-
tion equation for the area-mean Nusselt number which is
valid over the full range of the Prandtl number from zero
to infinity:

0.6774Re}/2 Pri/3
[1 + (0.0468/Pr)2/3)/*

Per > 100 (1)

Nup =

Natural Convection Correlation Equation

Churchill®® has proposed the following accurate correla-
tion equation for the area-mean Nusselt number which is
applicable over the full range of the Prandt] number from
zero to infinity:

1/4
Nug = 0.670Ra}’

= 10 < Grp < 10° (2)
[1+ (0.492/Pr)s/16]*/®

The two correlation equations appear to be quite differ-
ent and therefore, they are assumed to be unrelated. We
note that the product of the square root of the Reynolds
‘number and Prandtl number to the power of one-third ap-
" pears in the forced convection equation. On the other hand
the fourth root of the Rayleigh number appears in the nat-
ural convection equation.

The Prandt] number function which is appears in the
denominator of each equation are totally different. The
one common feature of the two equations is the numerical
value which appears in the numerator of each equation.
We note that they differ by only 1.1 %.

The apparent differences appear because of the arbitrary
choice of dimensionless groups used to represent the hydro-
dynamics and the energy equations. Both equations were
developed for the large Prandtl number limit as can be
seen from the trends of the two denominators.

It will be shown in the subsequent sections that the ap-
parent differences vanish when the appropriate dimension-
less numbers are used in the development of the forced and
natural convection asymptotes and correlation equations.
The appropriate dimensionless numbers arise from the low
Prandtl number limit.

ASYMPTOTES FOR FORCED AND NATURAL
CONVECTION

Analytic solutions are available for the extreme values of
the Prandtl number. Various analytic methods reported in
Qveral papers and heat transfer texts!=!? have been used

o determine the area-mean Nusselt number as a function

of the dimensionless numbers discussed above. The asymp-
totic solutions to be used here will be presented below. The
large Prandt] number results are appropriate for most flu-
ids, while the small Prandtl results are limited to liquid

. metals. Therefore the large Prandtl number asymptotes

will be consider first; however, the small Prandtl number
dimensionless groups will be introduced into them.

Large Prandtl Number Asymptotes
The analytic solutions for laminar forced and natural
convection heat transfer from isothermal flat plates for

Pr — oo are well-known?~12 and are given in the following
forms:

Forced Convection

Nug = 0.664 Re}/*Pr1/3 (3)
and
Natural Convection
Nug = 0.670 Ra}/* (4)

These apparently different solutions can be brought to-
gether by the introduction of the Peclet, Pe, and Boussi-
nesq, Bo, numbers into the forced and natural convection
asymptotes respectively.

As mentioned above, these important parameters appear
in the dimensionless formulation of the energy equation
when Pr << 1. Bejan? and more recently Mills!® discuss
the importance of the Boussinesq number in natural con-
vection.

We now divide the forced convection result by +/Per
and the natural convection result by Bo}l/ 4; this gives the
following interesting forms of the asymptotes:

Nug 0.664

Pei/z = Prl/6 (5)
and N 0.670
ur _ Y.
Bol/* T Pri/4 )

Examination of the new forms of the large Prandt] num-
ber asymptotes reveals that the forced and natural con-
vection flow parameters Pe; and Boy are related: i.e.,
Per =+/Bog.

A physical interpretation of the above results is that the
ratio of the convection diffusion length 61 to the conduc-
tion length A is equal to a constant divided by the Prandtl
number to some power less than unity. This will become
more apparent later.

Since the constants in the two asymptotes differ by ap-
proximately 1.1%, we can set both to the value 2/3, and
now the above results for forced and natural convection can




be generalized in the following physical manner which does
not require the Nusselt, Peclet and Boussinesq numbers:

o7 2

A~ 3Pm @)

where n = 1/6 for forced convection and n = 1/4 for natu-

ral convection. The Prandtl number remains in the general
equation.

In the following section it will be shown that Pe}/ 2

Pr — oo

and
Bo}‘/ 4 can be replaced by system parameters such as the
plate length, the thermal diffusivity of the fluid and the
maximum velocity in the respective boundary layers.

In the following section we will seek simple relationships
between the based on the maximum fluid boundary-layer
velocity.

GENERAL RELATIONSHIP BASED ON MAXI-
MUM VELOCITY

In the solution to the energy equation, the forced con-
vection flow parameter is

(8)

where the free stream velocity is the maximum boundary-
layer velocity. Therefore, the Peclet number can be said
to represent the maximum dimensionless velocity in the
boundary layer.

In the solution to the natural convection energy equation
the important parameter is

98(To — Too)La

av

Per = Rep Pr = é UV

gB(To — Too)La

P

(9)
Therefore the new natural convection flow parameter can
be written as

v
Boy = RayPr = 3=

v/Bor = ii VIB(To — Teo) L (10)

which is said to be the maximum dimensionless velocity
scale in the buoyancy-induced boundary layer:

L
v/ BoL = ; Umas (11)

The close physical relationship between Per and v/ Boy is
now evident.

The above relationships lead to the following general
asymptote applicable to both forced and natural convec-
tion:

NuL 1

JEU EPW
e maz 2

The Nusselt number can be expressed as

(12)

Pr—o0

where @ is the dimensionless area-mean wall flux. Letting
Uk sz = —Umaz provides us with another general expres-
sion applicable to the forced and natural asymptotes:
g _ 1
VUaz 3 ppn
2
The assertion that the left-hand side of the above equation

is the ratio of two length scales can now be easily demon-
strated. From the last equation we have

(14)

Pr — o0

Lo

Umex

E(To-To)

do
The numerator of the above general relationship is the
thermal diffusion length scale for convection heat transfer,
La

max

(15)

and the denominator is the length scale
k(TO — Tco)
do )

Le., bp =

for conduction, i.e., A =

Small Prandtl Number Asymptotes

The small Prandt!l number Pr — 0 asymptotes are pre-
sented in the following forms:

Forced Convection

Nug = —\% Rel 2Pr1’,2l (16)
and
Natural Convection
Nug = 0.8005Ra}/* Pri/4 (17)

The apparent differences between these asymptotic solu-
tions can be removed by introducing the Peclet and Boussi-
nesq numbers. With these dimensionless flow parameters
the above relationships can be written as

Nuy, 2

—_— = 18

Pe}/z NG (18)
and

Nup [2

Bo}'/4 “Vr (19)

The constant in Eq. (17) has been replaced by the constant
V2/m = 0.7979 with negligible error. The constants in
the forced and natural convection relationships given above
differ by a factor of V2 or approximately 41 %.

By means of the two length scales introduced above the
two asymptotic solutions can be replaced by a single equa-
tion similar to Eq. (7):

Pr—20

6T_
7 =Co

(20)
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with Co = 2/+/7 for forced convection and Cp = /2/7 for
natural convection.

GENERAL INTERPOLATION FUNCTION

A general interpolation function for 0 < Pr < co can be
obtained by inversion of the previous relationships and the
introduction of the dimensionless temperature excess (or
dimensionless thermal resistance):

kgo / La
9* = e 4\ / 21
do U mazx ( )
which has the following limits:
-LSG*SEPW 0<Pr<oo (22)
Co 2

Following the natural convection work of Churchill® and
the forced convection work of Churchill and Ozoe? the
above limits are blended by means of the interpolation pa-
rameter m > 1:

o (@) o)

The above interpolation function can be expressed
in terms of either the small or large Prandtl number
asymptotes. Following the convention established by
Churchill®-8 the large Prandt! number asymptote is se-
lected to give the general interpolation function applicable
to both forced and natural convection heat transfer:

(23)

3 2 \™Y"
@f:EPr"[l-f-(W) J 0<Pr<oo (24)
The value of the interpolation parameter does not effect
the asymptotic values established above. The appropriate
value of the interpolation parameter m is important for
Pr = 1. The values recommended by Churchill?, i.e., m =
9/4 for natural convection, and the value recommended by
Churchill and Ozoe®, i.e., m = 4 for forced convection are
used here.

For convenience and further discussion the interpolation
functions for the natural and forced convection are sum-

marized below.
Natural Convection Interpolation Function

With Cp = \/2/7,m = 9/4,n = 1/4, Eq. (24) becomes

9/474/9
) J 0<Pr<w

(25)

@:‘wz-‘i—f-Prll4 [1—}- (\/2_7r 1

3P

and 1/6%, = Nur/(Ra}/*Pri/4),

= Forced Convection Interpolation Function

With Co = 2/ /7, m = 4,n = 1/6, Eq. (24) becomes

1/4
3 1 \*
}‘cz-iprl/s[l-*-(ﬁm)J OSP7‘<OO

(26)
and 1/©%, = Nug/(Rel/? Pri/2),
We observe from the two preceding relationships that for
very large Prandtl numbers ©3:/0%5, — Pri/12

CONCLUDING REMARKS

A single, simple relationship between the dimensionless
temperature excess and the Prandtl number was devel-
oped for forced and natural convection heat transfer from
isothermal flat plates.

The dimensionless temperature excess is based on the
given thermophysical parameters such as the temperature
excess, fluid thermal conductivity and thermal diffusiv-
ity, plate length and the respective maximum velocities
within the forced and buoyancy-induced flows. The un-
known area-mean wall heat flux appears in the dimension-
less temperature excess.

The independent parameter is a Prandt] number func-
tion which depends on an intrinsic parameter which ap-
pears in the scaling analyses performed at the very large
Prandt] number limit; and a second parameter which arises
from the development of a general interpolation function
which is valid for the full range of the Prandt! number from
zero to infinity.

The blending parameters for forced and natural convec-
tion respectively are based on the works of Churchill.

The proposed general expression does not dependent on
the conventional dimensionless groups such as: Nusselt,
Reynolds, Peclet, Grashof, Rayleigh, and Boussinesq num-
bers. The reciprocal of the dimensionless temperature ex-
cess (which could be called the dimensionless area-mean
wall flux) is shown to be related to the conventional di-
mensionless groups as they appear in the solutions at the
very low Prandtl number limits.

During the development of the proposed general expres-
sion, important relationships between the forced and nat-
ural convection parameters such as the Peclet and Boussi-
nesq numbers are presented, as well as other relationships
between the thermal boundary-layer thickness and the con-
duction thickness.

The general expression allows the forced and natural
convection results to be plotted on the same graph because
they now have a common base. This is not possible using
the conventional correlation equations.
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