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Linearization Method for Buoyancy Induced Flow over a
| Nonisothermal Vertical Plate

S. Lee* and M. M. Yovanovich+
University of Waterloo, Waterloo, Ontario N2L 3G1. Canada

A simple model is developed to predict natural convective heat transfer from an isolated vertical plate with
an arbitrary surface temperature variation. The concept of linearized approximation is applied to the boundary-
layer equations with the use of an effective velocity. The effective velocity characterizes the huoyancy induced
flow in the boundary layer, and it is determined by relating the total work done by the buoyant force on the
fluid to the kinetic energy of the fluid flow. The temperature distributions in the fluid and the surface heat-flux
variations are predicted for the cases in air with a variety of different surface temperature conditions. The
present solutions are in excellent agreement with existing solutions that are obtained by using more rigorous

solution techniques.

Nomenclature
a. b = constants
C = coefficient given by Eq. (24)
C,. C, = coefficients
f. = function defined by Eq. (15)
Gr, = Grashof number, gBT, x./v*
Gr, = Grashof number. gBT . x/v*
Gr, = Grashof number. gB8T,.x"/v"
g = gravitational acceleration
k = thermal conductivity
Nu, = Nusselt number. ¢,.x/T,k
Nu, = Nusselt number. q,x/T,.k
Pr = Prandtl number. via
q = local heat flux
q* = dimensionless heat flux. 4/q.,,
Re, = Reynolds number. u x/v

T = temperature excess

average wall temperature

variable defined by Eq. (9)

= local velocity in x direction

etfective velocity

local velocity in v direction

vertical coordinate along the plate
horizontal coordinate normal to the plate
thermal diffusivity of fluid
thermal expansion coefficient

T, = temperature difference. T, — T.
boundary-layer thickness
dummy variable

similarity variable

dimensionless temperature, T/T,
kinematic viscosity
dimensioniess x coordinate. x/x,
= delay factor
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Subscripts
a = arbitrary references
i = parameters at ith step
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= wall conditions
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Introduction

HE study of natural convection has been carried out over

the past several decades by many investigators. To the
authors’ present knowledge. however. there exists no simple
analytical solution for predicting the heat transfer character-
istics of a vertical plate with an arbitrary temperature variation
prescgbed along the surface. Existing analytical approaches.
especially those which attempt to obtain exact solutions to
the boundary-laver form of the conservation equations. are
limited to a few specific cases with well-defined surface con-
ditions. Uniform surface heat flux.! temperature variations of
the power and exponential form.* and a line source on an
adiabatic plate® are the only surface thermal conditions that
allow similarity transformations for problems involving ver-
tical plates. The similarity transformations reduce the bound-
ary-layer equations to a set of ordinary differential equations
which, in turn. must be solved numerically.

In order to expand available solutions to include problems-
with nonsimilar surface conditions, numerous researchers have
conducted investigations using various methods and tech-
niques. The problem with a step change in surface temper-
ature was first examined experimentally by Schetz and Eich-
horn.* Their work was followed by Hayday et al.® and
Sokovishin and Erman® who used numerical methods. and by
Smith.” Kelleher.* and Kao” who used series expansions on
the same problem. More recently. Lee and Yovanovich.'"!!
and Park and Tien'? also developed approximate models for
a vertical plate with changes in thermal conditions.

All existing solution techniques for solving nonsimilar prob-
lems with general thermal conditions at the surface are of an
approximate nature and can be categorized into several classes.
The class of fully numerical methods. either finite-volume.
finite-difference. or finite-element methods. is the most ver-
satile for handling general boundary conditions. and is capable
of providing close-to-exact solutions. The second class consists
of series expansion methods. By applying appropriate coor-
dinate transformations and the Merk-type series expansions.
Yang and his co-workers'* reduced the boundary-layer equa-
tions to sets of ordinary differential equations which were
solved numerically for a vertical plate with prescribed surface
temperature and heat-flux variations. Others include the
methods of local similarity and local nonsimilarity. These
methods were developed by Kao et al.'* for cases with non-
uniform surface thermal conditions.

As with most analytical approaches. however. applicability
of the aforementioned approximate methods cannot be ex-
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tended to include problems with general boundary conditions
without losing the level of confidence in the solution accuracy
that may have been acquired by comparing the results with
others for some specific cases. This was indicated by 1) the
inability of the perturbation method of Kao? in predicting the
surface heat-flux distribution for the case involving a step
change in temperature when the downstream surface tem.
perature is prescribed equal or close to the ambient fluid
temperature; 2) the premature overshooting of Kelleher's
asymptotic series solutions* over the limiting values at down-
stream locations for the cases with a step change in surface
temperature; and 3) the divergence observed in the local sim-
ilarity and local nonsimilarity solutions of Kao et al, ™ when
linearly decreasing heat flux and sinusoidal temperature var-
iations are specified along the surface. Furthermore. in most
situations, these limitations are not foreseen until the resulting
solutions are compared case-by-case with more reliable so-
lutions. As the surface condition becomes arbitrary it is found
that the existing analytical methods either fail to become ap-
plicable or become so complex that it is ultimately simpler to
seek solutions by direct numerical integration of the governing
equations.

Simple, easy-to-use solutions are of a great value to those
involved in applications where most problems arise in such a
way that it is necessary to obtain quick solutions at a lower
cost. The objective of the current study is to provide a simple
expression for predicting heat transfer results along a vertical
surface with arbitrarily prescribed temperature variations. A
new approximate method is developed based on a lineariza-
tion of the conservation equations. The linearization is carried
out by introducing an effective velocity which characterizes
the boundary-layer flow induced by the buoyant force. The
resulting equations are solved and the effective velocity is
determined by finding the relationship that exists between the
total work done by the buoyant force on the fluid and the
effective kinetic energy of the fluid flow. The effective velocity
determined in this manner is found to be analogous to the
freestream velocity of an externally induced flow, thereby
allowing the present heat transfer analysis to proceed in such
a way that is similar to the forced convection analysis. A
simple. explicit solution. which only requires an algebraic sum
of a finite number of power terms. is obtained for local heat-
flux distributions.

Problem Statement

The geometric configuration and the coordinate system of
the present problem are shown in Fig. la. where a vertical
plate is depicted with an arbitrary temperature variation pre-
scribed at the surface. Also shown in the right side of Fig. 1a
is the growth of the hydrodynamic boundary-laver 5. The

" thickness of the boundary laver is shown greatly exaggerated
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in the v direction. The plate is suspended in an extensive.
quiescent fluid which is assumed to be maintained at uniform
temperature. The velocity and temperature fieids in two-
dimensional. steady-state laminar natural convective flow may
be described by the set of usual boundary-layer equations.
given as :

du [513)
PR 0 (n
ou au d*u i
— —_— =y — b
“ax TV T T T ()
aT aT T
H— + v— = q— (3)
ax av av-
with boundary conditions
at y=0, u=v=0 T= T.(x)
as yv—x u—0 T-0 4)

at x =0, u=T=290

where T denotes the temperature excess above the ambient
fluid temperature. Orily the cases where the surface temper-
ature excess is maintained positive will be considered in the
present study. This condition ensures that the buovant force
is in the positive x direction everywhere in the fluid. thereby
eliminating the possibility of an occurrence of a counterflow.

Without a loss of generality. the surface temperature var-
iation T,.(x) can be discretized into piece-wise uniform step
changes as presented in Fig. 1b where only a few steps are
shown for brevity. The prescribed temperature condition at
the plate surface given in Eq. (4) becomes

Ty=0) =T

wi

for x,=x<ux,,: i =01,

where x, = 0, and T,, is the average surface temperature over
the ith section between x = x, and X;,,. Obviously, a finer
discretization would yield a closer representation of the con-
tinuous variation, and in such cases the temperature at the
midlocation of the section can be used for T.,. The primary
boundary-layer § that is developed due to the initial step
increase of T, at the leading edge of the plate. is denoted
with a subscript 0. In addition to the primary boundary layer,
Fib. 1b shows the outer edges of the boundary layers devel-
oped at the onset of individual step changes. These inner
layers are denoted with the subscripts that correspond to those
of the step changes.
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Fig. 1

of boundary layers where surface temperature is prescribed by a) continu

wake of a buoyancy driven flow.

Geometric configuration and coordinate system shown with schematic representations of surface temperature variation-and development

ous variation, b) step changes, and ¢) an isolated step change in the
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Although the inner layers grow within and ultimately blend
into the outer layers, each inner sublayer may be conceptually
isolated from the primary boundary layer. Figure lc exhibits
a single step jump in surface temperature at x = x,. The right
side of the figure shows the corresponding boundary-layer
growth within the wake of the primary. hydrodynamic bound-
ary-layer flow. This case will be discussed further in a later
section. :

Linearization of Equations

The momentum and energy equations. Egs. (2) and (3).
are mutually coupled and nonlinear: the conditions that make
natural convection problems more difficult than forced con-
vection problems,-in general, by precluding the use of the
method of superposition in obtaining the solution. The equa-
tions are linearized and, simultaneously, the energy equation
is decoupled from the momentum equation by approximating
the convective operator appearing in the left side of Eqs. (2)
and (3) as follows:

J 3 9
— — ——
U=+ P u(x) ™ (6)

where u,(x) is the effective velocity, defined to be uniform
across the boundary layer.

The definition of u,(x) that is exact in the integral form of
the momentum equation. can be obtained by integrating Eq.
(6) from y = 0 to & with u as an operand. [t follows that

d [ .
‘&;Jowdy
d 3
a[ﬂudy

Equation (1) was used in simplifying the numerator of the
above definition. Instead of u, T could have been used arriving
at another definition for u.(x). This definition based on T
yields an expression for «(x) which is exact in the integral
form of the energy equation and is functionally identical to
the one obtained from Eq. (7). Either definition can be used
in the following analysis in determining u,(x).

The linearized convective operator on the right side of Eq.
(6) can be transformed further by introducing a new variable
¢ such that

ufx) =

™)

dx
= ®
or
[
o 2d) ®)

The parameter ¢ can be viewed as the effective residence time
of the fluid flow from the leading edge of the piate to the
downstream location x. .

With the use of Egs. (6) and (8). the momentum and energy
equations in the x-y plane can be transformed into the t-y
plane, written as ’

du u '
o Vot + gBT (10)
aT *T
-_— = (11)
ot ay*

and the thermal boundary condition given by Eq. (5) becomes

Ty=0) =T, for ,=1<1t,.,: i=0,1.2,...
(12)

where ¢, corresponds to x,, and ¢, = 0.

Analysis
The exact solutions o the above linearized equations are
found by means of similarity transformations and the method
of superposition.'* They can be written in terms of the com-
plementary error functions for x, = x <x,, as

T = > AT, erfcy, (13)
w =28 2 AT, (t = t)fu(n) (14)
where
nierfc n for Pr=1
fdm) = . ‘ "
- <1-erfc n — i%erfc ﬁ) for Pr & 1
(15)
with the similarity variable 7, given by
n = [y2Va(t - 1) (16)

Here. and throughout this article, the parameters with sub-
script (i — 1) vanish when i = 0. The only unknown in the
above solutions is the transient variable (r — r,). Determi-
nation of (+ — ) in terms of x will be carried out in two
stages.

First. let us examine the case of flow over an isothermal
surface. Although exact similarity solutions are available.” it
is useful to reexamine the isothermal case as it will provide
the basis upon which the current analysis can be extended to
include the cases with arbitrary temperature distributions at
the surface.

An isothermal case corresponds to the present problem with
k = 0. Substituting the first term of Eq. (14) into Eq. (7) for
u and evaluating the integrals with § — = leads to

u, = CgBT,.t 17)

where C, is a function of the Prandt] number. Determination
of this function is not necessary, and it is sufficient to note
that this coefficient is a constant for a given fluid. By differ-
entiating the above equation with respect to r and substituting
Eq. (8) for dt. it can be shown that

du?

dx = 2CgBT,

(18)

ol

This indicates that the change in the effective Kinetic energy
of the flow in the x direction is proportional to the buoyant
force exerted on the fluid adjacent to the surface. Integration
with respect to x gives

w(x) = VICGRTom (19)

Substituting this into Eq. (9) and evaluating the integral. one
finds that

t = 20

Therefore. the temperature solution given by Eq. (13) can
now be expressed in terms of the known parameters, except
the value of C,. »
From the temperature solution the surface heat flux q..(x)
can be obtained by employing Fourier's law of conduction at
the plate surface. After using Eq. (20) for r and rearranging,
the local Nusselt number may be written in the form which
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is identical to the one obtained in laminar forcea convection
analysis . '

Nu, = C,Re!? (21)

where C, is another function of the Prandtl number and Re,
denotes the local Reynolds number defined as

Re, = (u,x/v) i (22)

Equation (21) reveals the similarity between natural and
forced convective heat transfer analyses. It indicates that the
buoyancy induced effective velocity u,(x) can be seen to be
analogous to the externally induced freestream velocity of the
forced convection study. Substituting Eq. (19) for u,(x). Eq.
(21) becomes

Nu, = CGri# (23)

which is identical to the form of known laminar natural con-
vection results.

The coefficient C consists of C, and C.. It can be determined
either by conserving the momentum and energy over the
boundary layer," or simply by comparing the heat transfer
result with known data. Since the prime objective of the pres-
ent investigation is to seek a simple solution that requires the
least computational effort the latter will be emploved to de-
termine C. For example, by comparing the above result with
the correlation equation proposed by Churchill and Usagi, '
it can be shown that

N 0.503Pri+
T {1 + (0.492/Pr)vie}ss

(24)

With the use of Egs. (19), (20). and (24). the parameters
associated with the temperature solution for the isothermal
case are completely determined. and the similarity variable
7, can be written as

CVr

o = 3

va ¥
Grits _ (25)

This concludes the first stage of the analysis in determining
the transient variables. The analysis so far has shown that it
is possible to derive the proper heat transfer relationship for
isothermal cases from the linearized differential equations.
We shall now extend the above analysis 1o determine (r — r,)
for problems involving multiple step changes in surface tem-
perature.

Recall that in linearizing the governing differential equa-
tions. the effective velocity u,(x) was introduced as an input
parameter to the differential equations and. therefore. it needs
to be determined based on information external to the equa-
tions. In the above example with an isothermal surface. this
was accomplished by equating the integral forms of the equa-
tions. It resulted in Eq. (18) which was subsequently inte-
grated to obtain Eq. (19) for u,(x). Similarly, by assuming
that the proportional relationship observed from Eq. (18)
between the change in kinetic energy of the fluid flow and
the buoyant force on the fluid is not affected by the existence
of the variable temperature condition at the surface. the ef-
fective velocity u,(x) for the case with an arbitrarily varying
T.(x) is obtained by integrating Eq. (18) with T.(x) in place
of T,,. It results in

ufx) = V2CgBT.x (26)
where T, is defined as

T. = ! J ‘ T.(¢) d¢ N
X Ju

As was previously.observed in the case of an isothermal
plate. this velocity given by Eq. (26) can be seen to be anal-

ogous to the freestream velocity of the forced convection
analysis. In the following. the effects that each isolated step
jump in surface temperature has on the overall temperature
solution will be determined.

Consider the fluid flow over a vertical plate which expe-
riences a single step jump in temperature AT, at some down-
stream location x = x,. This is a classical problem that appears
in the study of forced convective heat transfer from a fiat
plate that has an unheated starting length upstream of the
heated section as shown in Fig. lc. The hydrodynamic bound-
ary-layer growth begins at the leading edge whereas the ther-
mal boundary-layer development begins at x = x,. Through
use of an integral boundary-layer solution'” it can be shown
that y, which accounts for the unheated starting-length effects
on the heat transfer. can be obtained as

Nu, _ _[x 1"
X = Nux,— 0) l:l (x) ] (28)

with a = § when the approaching flow velocity u,(x) is given
by Eq. (26), and b = 1 for the externally induced laminar
flow of a high Prandtl number fluid. Here. the effective ve-
locity for a nonisothermal surface case is assumed to maintain
the same variation with x as in the isothermal case.

The above thermal delay factor is derived providing that
the entire boundary-laver flow over the heated section is solely
due to the externally induced flow described by Eq. (26).
Therefore. the effects that the buoyant force has on the fluid
flow beyond x = x, are not accounted for. Since the value of
b depends, in part. on the type of flow. it is seen that b is the
parameter which can be modified to account for the buovant
effects on the flow. In this regard. the limiting values of the
Prandtl number and the definition of the parameter ¢ given
bv Eq. (9) were examined. and it is found that the value of
b is bounded and it depends on the Prandtl number. An
examination of heat transfer results shows that for air (Pr =
0.7). b = 1 + & results in the best agreement with existing
data obtained by various techniques for different temperature
distributions. .

Note that in the above definition of the delay factor. Nu,
denotes the local Nusselt number corresponding to the ith
step change in surface temperature and Nu (x, — 0) is the
local Nusselt number corresponding to the isothermal case.
Also. from the temperature solution given by Eq. (13), the
local Nusselt number can be found to be inversely propor-
tional to the square root of the transient variable. Hence. in
terms of the transient variables, y can be expressed aiso as

Nu, _Va
Nu(x, = 0) Vi-y

X = (29)

By equating Egs. (28) and (29). and substituting Eq. (20)
for ¢ with Eq. (26) for «,(x). the transient variable r — t, can
be written as

2 AT |
- ['. = = l - (-—') (30)
V2CgBT.x x

Substituting Eq. (30) witha = ¥ and b = { + !into Eq. (16)
results in

C\/'/:— ) , ! 9 v-u,-_\.lzm
m = o G ‘[1 - (1) ] (31

4o
- X X,

Since the forgoing derivation is developed for the arbitrary
ith step change. Eq. (13) with », given by Eq. (31) represents
the approximate temperature solution for the case with mul-
tistep changes. The complementary error function appearing
in the solution can be evaluated by means of a numerical
tntegration or by using a rational approximation® with a high
degree of accuracy.
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From the temperature solution. the iocal surface heat flux
is obtained as

k < GNg ~(1 V1)
4. = C=Gri* X AT, [1 - (1> ] (32)

=0

where C can be evaluated from Eq. (24).

Comparisons and Discussions

As with other approximate solutions developed in the past.
the present solution needs to be validated by comparing the
results with those that are obtained by employing “‘exact”
solution techniques. The temperature distributions in the
boundary laver for the case of an isothermal plate are com-
pared in Fig. 2 with the similarity solutions of Ostrach' for
various Prandtl numbers. Figures 3 and 4 show the compar-
isons of the dimensionless temperature field development in
air (Pr = 0.72) due to a single step change in surface tem-
perature at selected downstream lccations with step ratios
8., = T./T.,, = 0.503 and 0. respectively. As can be seen
from the figures. the present results agree well with those
obtained by using the finite-difference methods® and experi-
mental measurements.*

Natural convection results for a vertical plate with non-
similar thermal conditions have been obtained by many in-
vestigators using different methods. The plate with a step
jump in surface temperature has been examined extensively
in the past. Although it has little practical importance, an
examination of this case provides useful information to de-
velopers of new solution methods. especially when the method
is approximate such as the one presented herein.

1
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£ &5’ ----- Similarity {19}
i)
S 4
.2
o : . . :
o] -1 1 1.5 2 2.5 3 3.5
(93)"‘ v
4 z

Fig. 2 Comparison of dimensionless temperature distributions for
various Prandtl numbers with a uniform wall temperature.
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Fig. 3 Comparison of dimensionless temperature field development
with a step change in wall temperature (9., = 0.503, Pr = 0.72).
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A dimensionless surface heat tlux distribution for x >
for the foregoing case can be written from Eq. (32) with « =
I as :

qr, = 4w = (;,'.‘Z‘ [l + (8., — N1 - §'”)""”"""}
q“'"
(33)
with

6. =1+(6, - DA -¢M (34)

where g, is the local heat flux at the location of interest with
the entire wall maintained at temperature T,,. The result
obtained by using the above equation is plotted and compared
with other data in Fig. 5. The values indicated by arrows are
the asymptotic values at large ¢. They are obtained from

lim g2, = 852 (35)

f—x

In practice, the laminar regime is not likely to be maintained
at far downstream locations. Nevertheless, it is worthwhile
stressing that the present solutions satisfy all the limiting con-
ditions at large ¢, as‘it can be shown that the solution becomes
similar based on T, in the limit as £ — =. Figure 5 exhibits
an excellent agreement of the present predictions especially
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=5 1 30D 1 ¢=1077
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.2 Y .
L . o ~\\ ~
o L L L y
o] .S 1 1.3 2 2.5 3 a.S
(Gr:):“y
4 z

Fig. 4 Comparison of dimensioniess temperature field development
with a step change in wall temperature (8., = 0, Pr = 0.72).
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s 9 —
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a ¢ v Experimental [4]
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s T S R S

)

1 1.4 1.8 2.2 2.6
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Fig. 5 Comparison of dimensionless surface heat flux with a step

change in wall temperature (Pr = 0.72).
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with the numerical results of Hayday et al.* and the pertur-
bation series solution of Kao.” Kao's solution is unavailable
for 6., = 0 since his perturbation parameter becomes un-
bounded for this case. Considering the conditions at large ¢,
improper deviations from the limiting values are observed in
the asymptotic series solution of Kelleher.*

If a solution method is to become a valuable working tool
for practical uses, not only should it be simple. but also it
should be capable of making accurate predictions for the cases
with a continuous surface temperature variation. In Figs. 6
and 7, Nu,/Grl"” predictions are plotted as a function of the
dimensionless position x/x, for surface temperature variations
of the exponential and sinusoidal forms. respectively. The
parameters 7, and x, appearing in the figures represent ar-
bitrary temperature and length scales. As was discussed pre-
viously, the continuous variation is discretized into a number
of step changes and the surface heat flux at the midlocation
of each element is computed. It is found that the solution at
a given location does not depend strongly on the number of
elements used. Nonetheless, a sufficiently large number of
equally spaced elements is used in order to generate smooth
plots. Also shown in the figures are the results of the local
similarity,'* local nonsimilarity®* and numerical methods. 34
They are obtained by digitizing the plots presented in the
referenced papers and converting the variables to the present
forms. The numerical results of Kao et al.'* completely over-
lap with those of Yang et al.'* As can be seen from the figures.
the agreement between the present solutions and the local
nonsimilarity and numerical results are remarkably good. Ex-
cept for the local similarity method., the results predicted by
different methods are virtually indistinguishable particularly
for the cases with the exponential variation.

8
R ———  Present
——— Local Similarity {14]
Ch o ° Local Non-Similarity {14]
| —e-e- Numerical [13, 14}

Tw = Ta el

Y

0 -1 ! 1.5 2 2.5
zl

Fig. 6 Comparison of dimensionless surface heat flux with exponen-
tially increasing wall temperature (Pr = 0.7).

.5

T, =T, sin(z/z,)

—=——— Present
~——Local Similarity {14}
-2k [} Local Non-Similarity [14]

I, Numerical [13. 14)

Za
Fig. 7 Comparison of dimensionless surface heat flux with sinusoidal
wall temperature variation (Pr = 0.7).

Suinmary and Concluding Remarks

An approximate. but simple and highly accurate model is
developed for predicting the temperature distribution and the
surface heat flux variation in laminar-free convection along a
vertical plate with an arbitrarily specified wall temperature
variation. The model is developed based on a transformation
of the problem into a linearized form through the use of an
effective velocity. The effective velocity characterizes the
boundary-layer flow, and it is found to be analogous to the
externally induced flow velocity. The accuracy and validity of
the present solutions are demonstrated by comparing the re-
sults with the existing data obtained by using more rigorous
techniques.

The study reveals the usefulness and potential capability of
approximate techniques in producing adequate solutions for
problems for which exact solutions are not available or are
difficult to obtain. The method shows that it is possible to
obtain linearized solutions for nonlinear natural convection
problems with a high degree of accuracy. The methodology
emploved in developing the present temperature specified
model is equally appiicable in developing a model for surface
heat-flux specified problems. Such solutions have been ob-
tained by the current authors.™ and they are also in exceilent
agreement with numerical*"* and local nonsimilarity solu-
tions. '
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