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A simple analytical model is developed to predict transient heat conduction from isothermal convex bodies 
into an infinitely large, constant property surrounding region. The proposed model is based on the linear 
superposition of two asymptotes, corresponding to transient diffusion into a half-space and steady-state con- 
duction into a full-space. A wide range of body shapes are considered, including oblate and prolate spheroids 
and various cuboids and infinitely thin bodies. Since simple analytical solutions exist only for the half-space and 
sphere problems, validation of the proposed model for all other body shapes implements results from numerical 
solutions over a full range of dimensionless time. The maximum difference between the proposed analytical 
model and the numerical results for most body shapes occurs in the transition region, lo-” < Fo < I O - ‘ ,  and 
is less than 10%. This maximum difference can be reduced to within 2% by introducing a blended solution for 
each body shape. 

Nomenclature 
A = active body surface area, m’ 
A R  = body aspect ratio, heightidiameter 
U = focal length, spheroid bodies, m 

sphere radius,-m 
finite volume coefficients 
specific heat, J/kgK 
Fourier number, 
metric coefficients 
control volume indices 
thermal conductivity, W/mK 
characteristic body length, m 
blending parameter 
instantaneous heat flow rate, W 
dimensionless heat flow rate, 
polar coordinates 
generalized radial coordinate, m 
conduction shape factor 
cuboid side half-lengths, m 
temperature, “C 
time, s 
body volume, mi 
Cartesian coordinates 
thermal diffusivity, m2/s 
control volume intervals 
spheroidal coordinates 
surface temperature difference, =To - T, 
mass density, kgim’ 
dimensionless time, -Cut/2? 
dimensionless temperature, 
‘(7- - T,.)/(T,) - T,) 
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Subscripts 
0 = at the body surface 
X = at points far from the body 

Introduction 
OMPLETE solutions for transient heat conduction from C most isothermal convex bodies, such as cuboids, short 

circular cylinders. and prolate and oblate spheroids, into a 
constant property medium of large extent over the full range 
of time values are currently not available in the literature. 
Although the solution of the transient temperature distribu- 
tion in the region surrounding the oblate and prolate spheroids 
is theoretically possible as described by Morse and Feshbach,’ 
the computation of heat flow rates from these bodies is pro- 
hibitively difficult because of the special functions that are 
required for the calculation. Norminton and Blackwell’ and 
Blackwell’showed that it is possible to obtain long- and short- 
time expressions for the temperature distributions surround- 
ing oblate and prolate spheroids. However, these authors d o  
not report heat transfer rates for their short- and long-time 
solutions and they conclude that the exact solution for the 
complete problem seems impossibly difficult to  obtain. 

Solutions over the full-time range for the transient external 
problem for other convex body shapes, i.e., short circular 
cylinders or any cuboid bodies, are not available in any of 
the principal conduction texts. ‘-4-h 

The only analytical, full-time, and easily implemented so- 
lution available for instantaneous heat flow from an isother- 
mal convex body involves the sphere,4 a limiting case of both 
the oblate and prolate spheroids. This simple solution com- 
bines the asymptotes corresponding to the short-time half- 
space solution and the long-time steady-state solution to de- 
velop a full-time expression. 

Using the formulation suggested by the sphere solution, 
the following study proposes a simple and accurate model 
for predicting the dimensionless instantaneous heat flow 
rate from convex bodies of arbitrary shape. This model will 
implement the square root of the body’s active surface area 
as the characteristic length to  nondimensionalize both the 
heat flow rate and the time. It is anticipated that this choice 
of characteristic length will reduce all data to  a single 
asymptote for short-time solutions and to a small range of 
values for long-time solutions. The  proposed model will be 
applied to a wide range of body shapes, as presented in Fig. 
1,  including square disks, cubes and tall cuboids, the infi- 
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OBLATE SPHEROID 
(AR=O 5) 

CIRCULAR DISK 
(AR=O) 

SQUARE DISK 
(AR=O 1) 

SPHERE PROLATE SPHEROID 
(AR=l) IAR=1.93) 

PROLATE SPHEROID 
(AR=10) 

the surroundings is determined by an area integration of the 
local heat flux at the inner boundary of the solution domain: 

Q = kO, , ( (  - V$.ndA (7 )  

Nondimensionalizing this expression using the general char- 
acteristic length 9 yields 

RECTANGULAR STRIP where HI, is the surface temperature difference, T,, - T , ,  and 
A is the active surface area of the body. 

One of the objectives of this work is to  propose a length 
scale that reduces the range of variation of the nondimen- 
sionalized heat flow rate, as expressed in Eq.  (8) ,  for all body 
shapes. The proper choice of 2 will minimize the dependence 
of this function on both the body's shape and aspect ratio. 

There are many characteristic lengths that can be used for 
Y .  For the example of the short circular cylinder, one may 
select either the diameter D or the height H .  or various com- 

(AR=O) 

CUBE TALL CUBOID TALL CUBOID 
(AR=l) 

Fig. I 
lem. 

Various convex body shapes for the transient external prob- 

nitely thin circular disk and rectangular strip, and various 
oblate and prolate spheroids. 

Because of the lack of analytical solutions in the literature 
for the transient external problem, the proposed model will 
be validated using numerical results from finite volume codes 
based in oblate spheroidal, prolate spheroidal, and Cartesian 
coordinates. 

Problem Definition 
The external problem, defined in this case as transient heat 

conduction from isothermal convex bodies of arbitrary shape 
into a constant property medium of large extent, can be char- 
acterized by the dimensionless heat flow rate Q':. This quan- 
tity is available through the solution of the nondimensional- 
ized diffusion equation in the surrounding region: 

where r,, defines the surface of the isothermal body. The di- 
mensionless temperature excess for the surroundings, 4(r ,  T), 
is defined as 

The nondimensional time T is expressed in terms of a general 
characteristic length for the arbitrary convex body shape in 
question -Y: 

The initial and boundary conditions for Eq. (1) for the tran- 
sient conduction problem in an infinitely large, uniform tem- 
perature medium with a n  isothermal boundary at the inner 
surface are 

+(r,  0) = 0 (4) 

( 5 )  

( 6 )  

$(r  = r,,, T > 0) = 1 

$ ( r -  x, T > 0) + 0 

Using the solution to the diffusion equation $(r ,  T ) ,  the in- 
\tantaneous heat flow rate Q from the isothermal body into 

" 
binations of these two lengths such as 9 = VIA, where V is 
the volume of the body and A is its total surface area. Other 
possible characteristic lengths may include either of the pe- 
rimeter dimensions of the body, 9 = n D  or  2 = 2 0  + 2H. 
For the oblate and prolate spheroids, some researchers have 
used the semimajor and semiminor axis lengths. For spheres, 
the diameter is frequently chosen, while in the case of cubes, 
the side length is often selected. 

However, when a general model for all body shapes is 
considered, the most appropriate body length has been found 
to be Y = m, where A is the total heat transfer surface 
area of the body. It was first proposed by Yovanovich' for 
natural and forced convection heat transfer from single iso- 
thermal convex bodies of arbitrary shape. Chow and Yovan- 
ovich" demonstrated that when 2 = a is used, the range 
of variation of the shape factor for the capacitance of con- 
ductors of arbitrary shape is minimized. This behavior of the 
capacitance shape factor is analogous to the steady-state, heat 
conduction shape factor for all body shapes. 

In a similar manner, when 2 = m is implemented at the 
short-time limit, the dimensionless instantaneous heat flow 
rates for all body shapes will collapse to  a single asymptote 
corresponding to the classical half-space solution. 

Using the proposed length scale 2 = V% and the transient 
temperature distribution' for the region surrounding an iso- 
thermal sphere of radius b 

the analytical solution for the dimensionless instantaneous 
heat flow rate from the isothermal sphere is determined by 
Eq. (8): 

where the dimensionless time T has been replaced by the more 
commonly used Fourier number: 

Fo,, = (at)/(v\/;?)? (11) 

The first term in Eq. (10) represents the long-time, steady- 
state asymptote corresponding to the conduction shape factor 
s:: z3 and can be easily related to  the dimensionless thermal 
resistance of the body Y' = 1iR". The second term in Eq .  



YOVANOVICH, TEERTSTRA. A N D  CULHAM 3x7 

(10) is the short-time asymptote that can be shown to be 
identical to the dimensionless heat flow rate of the semi- 
infinite solid solution. The resulting analytical expression for 
the transient heat flow rate from an isothermal sphere into 
the surrounding region is a simple linear superposition of these 
short- and long-time asymptotes. 

Numerical Models 
In order to examine the large number of body shapes for 

which the proposed superposition model is valid, two different 
numerical models are used. The first is a finite volume solution 
for the axisymmetric oblate and prolate spheroids, which in- 
cludes as  special cases the sphere and the infinitely thin, cir- 
cular disk. The second numerical model used in this analysis 
is the commercial finite volume package FLOTHERM,‘ which, 
because of its use of Cartesian coordinates, will be used to 
model a variety of cuboid shapes. Both of these numerical 
formulations are briefly discussed in the following sections. 

Oblate and Prolate Spheroid Models 
The transient solution values for both the oblate and prolate 

spheroids are determined using a fully implicit, axisymmetric 
finite volume analysis for the region surrounding the isother- 
mal body surface. The finite volume equation set for each of 
these cases is developed using the following formulation for 
an arbitrary control volume, as expressed in general orthog- 
onal curvilinear coordinates”’: 

where the coefficients are determined using 

The notation i and j indicate control volume indices in the u ,  
and u ,  directions, respectively, At  is the time step, and AV is 
the volume of the control volume, determined using 

In order to apply this general formulation to the specific prob- 
lem of an isothermal oblate spheroid, the following coordinate 
values are substituted into Eq. (12): 

uI = 77 

u 2  = 0 

g3; = a’ cosh’v sin% (19) 

(20) = u’(cosh’77 - sin’0)cosh 77 sin 0 

where a is the focal length of the body. After simplification, 
the finite volume coefficients for oblate spheroidal coordi- 
nates can be expressed as 

I,, I cosh 77 sin O(cosh’7 - sin%) d q  d 0  

where the integrals in Eqs. (23) and (24) must be evaluated 
numerically for each control volume in the solution domain 
(for a full derivation of the numerical model in oblate sphe- 
roidal coordinates, see Ref. 12). 

Boundary conditions for the axisymmetric solution domain 
presented in Fig. 2 include adiabatic surfaces at  0 = 0 and 
0 = T ,  as well as a homogeneous Dirichlet condition at 77 + 
x and an isothermal boundary at the body surface, where the 
coordinate position of this inner surface vl, is related to the 
aspect ratio of the body A R  by 

v,, = tanh ~ I(AR) (25) 

This boundary moves between the limits 7 = 0 for the infi- 
nitely thin circular disk ( A R  = 0) and 77 + x. for the sphere 
(AR = 1) .  

The finite volume equations for prolate spheroidal coor- 
dinates are determined from Eq.  (12) in the same manner. 
By substituting 

uI = 77 

u2  = 0 

u; = + 
and the metric coefficients” 

the finite volume coefficients become 

u;  = * 
as well as the metric coefficients”: 

g , ,  = gZ2 = a’(cosh’q - sin%) 
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. -  - 

Isothermal Oblate 
Spheroid (q = q,) 

Fig. 2 Finite volume model in oblate spheroidal coordinates. 

J, J sinh g sin O(sinh'g + sin%) d g  d0 

(32) D = -Tm.  'I 

1 . 1  (aria ?) 

Boundary conditions in the solution domain are similar to  
those presented for the oblate spheroid problem, with the 
exception of the coordinate value of the isothermal inner 
surface, determined in this case using 

g,, = tanh- ' ( l /AR) (33) 

This numerical model has been validated for a number of 
limiting cases, including the full-time sphere and long-time' 
and short-time' circular disks (for a full description of this 
validation, see Ref. 12). For the sphere problem, differences 
between the numerical values and the exact solution is less 
than 1%, while the numerical results for the circular disk 
varied from the long- and short-time approximations by less 
than 2% within their applicable ranges of dimensionless time. 

Cuboid Models 
The transient numerical solutions for all cuboid shapes are 

determined using the FLOTHERM computational fluid dy- 
namics (CFD) software. Because of the symmetry that occurs 
in all three planes of the three-dimensional bodies, the origin 
of the local Cartesian coordinate system is placed at  the center 
of the body and adiabatic planes are introduced at x = 0, y 
= 0, and z = 0, resulting in a model that represents one- 
eighth of the total volume of the body. The boundary con- 
dition on the inner surface of the solution domain is a cuboid- 
shaped, isothermal heat source placed at 0 5 x 5 s,, 0 s y 
5 s?, and 0 5 z 5 s;, where sI, s2,  and s, are the half-lengths 
of the sides of the body. This boundary condition and the 
solution domain discretization are presented in Fig. 3. 

In order to  effectively model an at-infinity homogeneous 
Dirichlet boundary condition for the transient conduction so- 
lution, a number of different solution domain discretizations 
were used. For short-time problems, Fo,;i = 10-'-10-4, where 
it is anticipated that the temperature field will remain very 
close to the body, the depth of the solution domain is kept 
at a level close to  the side length of the body, and a large 
number of very thin control volumes are placed near the 
isothermal surface. As the transient solution progresses, the 
outer boundary is moved outward until the long-time limit is 
reached, Fo,, = 102-10', where the required field depth is 
of order 50 times the side length of the body. In order to keep 
the model size to a minimum, especially for the long-time 
cases, special grid-generation techniques within the CFD soft- 
ware are implemented that concentrate control volumes near 
the isothermal body surface, as shown in Fig. 3. 

The numerical results for the cuboids have been validated 
using both the half-space asymptote as well as the steady-state 

f 

x' 

External Region 

Fig. 3 Finite volume model for cuboids in Cartesian coordinates. 

conduction shape factor for a number of bodies with an aspect 
ratio near unity. Although accuracy for the short-time prob- 
lems seemed to suffer as a result of the roundoff error as- 
sociated with large temperature gradients near the body sur- 
face, the steady-state numerical model was able to  predict the 
conduction shape factor for the cube, the square disk ( A R  
= 0.1) and the tall cuboid ( A R  = 2) to  within 1% of the 
values presented by Martin. 

Results 
Numerical Results 

The numerical results for the transient temperature distri- 
bution in the homogeneous medium surrounding the isother- 
mal bodies, obtained by means of the two finite volume meth- 
ods, have been reduced into time-dependent, dimensionless 
heat flow rates using 

(34) 

For the oblate and prolate spheroids, including the circular 
disk. this area-mean heat flux expression becomes 

(35) 

where the temperature gradient at the body surface is avail- 
able through a first-order approximation of the numerical 
results. 

For the case of the cuboids, the integral in Eq .  (34) must 
be evaluated in a piecewise manner for each surface of the 
body. For the FLOTHERM model used in the present anal- 
ysis, symmetry allows the evaluation of the shape factor using 
only a small portion of the total surface area of the body: 

1 

where s,, sZ, and si are the half-lengths of the body in the x, 
y ,  and z directions, and 

A = (s, x sz) + (s, x s3) + (s? x s3) (37) 

The dimensionless instantaneous heat flow rates Q'Lx for 
10 body shapes have been plotted for the full range of di- 
mensionless time lo-"  < FO,,;~ < lo7 in Fig. 4. These nu- 
merical results include a wide range of body shapes, such as 



YOVANOVICH, TEERTSTRA. A N D  CULHAM 389 

1 o2 

o v  

Q* -QdA 
&'=Eo 

10' 

1 oo 
10 '~  10.~ 10.~ 10.~ io-*  i o '  i oo  i o '  i o2  i o 3  

Fo4= "' 
(./AI2 

Fig. 4 Sphere analytical solution and numerical results for external transient conduction from various body shapes. 

square disk ( A R a . 1 )  - 
rectangular strip (AR=O)- 

cube (AR=I) 

tall cuboid (AR=2) - 
tall cuboid (AR=10) - 

oblate (AR=0.5) 

sphere (AR=I) 

prolate (AR=I .93) 

prolate (AR=IO) 

half-space 

- 

- 
-, 

the thin circular and square disks, the sphere and cube, the 
oblate and prolate spheroids, and the tall square cuboid. All 
these body shapes have a large variation in aspect ratio, span- 
ning the range 0 5 A R  5 10. 

for all body 
shapes are in excellent agreement with the half-space asymp- 
tote provided Fo,, < lo-'. In addition, it can be shown that 
the numerical results for all bodies follow the trend of the 
sphere solution, with values that are very close to the sphere 
over the entire range of dimensionless time. The results for 
the oblate and prolate spheroids and the sphere are almost 
identical over the entire range of Fo,;~. The maximum dif- 
ferences are observed between the thin bodies (circular and 
square disks) and the tall bodies (prolate spheroid A R  = 10 
and the tall cuboid A R  = 10). These differences, which occur 
between the steady-state asymptotes, are approximately 25%. 

As can be seen from Fig. 4, all values of 

Linear Superposition Model 

dimensionless heat flow is 
The proposed superposition model for the instantaneous 

where S'{i;i is the dimensionless conduction shape factor for 
isothermal bodies of arbitrary shape. The values used for 
S"t2 in the present analysis are based on results and models 
found in several  reference^.^.^.'^-'^ Table 1 presents a com- 
parison of the results of the model with the numerical results 
for the nine nonspherical body shapes in terms of the maxi- 
mum and rms percent difference. As can be seen from these 
results, the superposition model shows good agreement with 
the numerical values for bodies with aspect ratios close to 
unity, such as the square disk, the cube, the tall cuboid (AR 
= 2), and the oblate (AR = 0.5) and prolate (AR = 1.93) 
spheroids. However, in the case of bodies with very large or 
very small aspect ratios, A R  >> 1 or  A R  --f 0, large inac- 
curacies in the model may occur in the intermediate range, 
lo- '  < F O , ,  < lo-'. 

Blended Superposition Model 
In order to improve the effectiveness of the model for all 

body shapes regardless of their aspect ratio, blending is ap- 

plied using the Churchill and Usagi methodIx to the short- 
and long-time asymptotes. By introducing the blending pa- 
rameter n ,  the superposition model can be expressed as 

where, in the case of no blending (n  = l), the model is 
reduced to a linear superposition of the asymptotes, corre- 
sponding to Eq.  (38). Rearranging the blended expression 
yields an explicit formulation for the instantaneous dimen- 
sionless heat flow: 

where Eq.  (39) has been arbitrarily expanded in terms of the 
half-space asymptote. Introducing a blending parameter n # 
1 in the preceding equation will not effect the values predicted 
for the short- or long-time limits, but in the intermediate 
range, lo- '  < Fo,,;~ < l o - ' ,  small changes in n will have a 
large effect on the results. Values of n > 1 will tend to decrease 
the value of the function in the midrange, while n < 1 increases 
its value. 

Table 2 compares the numerical results for the nine body 
shapes presented in Table 1 with the values predicted by the 
blended solution, where a blending parameter has been de- 
termined for each case, which minimizes the rms percent dif- 
ference. It is obvious from Table 2 that applying blending to 
the superposition model has greatly increased the accuracy, 
especially for cases where A R  + 0, such as the circular disk 
or rectangular strip, or A R  >> 1, such as the tall cuboid or 
prolate (AR = 10). Using the optimized blending parameter 
in each case leads to an rms percent difference between the 
numerical results and the model of less than 1% for most 
cases. 

In order to apply the blended model to an arbitrary body 
shape where the solution is not known, it is necessary to 
examine the trends evident in both Fig. 4 and Table 2 in order 
to make some recommendations concerning the proper choice 
of blending parameter. A general recommendation would be 
that bodies with small aspect ratios, such as disks and thin 
plates, require blending parameters that are larger than 1, 
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Table 1 Comparison of superposition model and numerical results 

‘36 difference 
Body S * h  Maximum rms 
Circular disk (AR = 0) 3.192 7.05 3.36 

Cube (AR = 1) 3.388 3.78 2.52 

Rectangular strip (AR = 0) 3.303 4.99 2.94 
Square disk (AR = 0.1) 3.343 2.60 1.91 

Tall cuboid (AR = 2) 3.406 2.77 1.87 
Oblate spheroid (AR = 0.5) 3.529 0.98 0.40 
Prolate spheroid (AR = 1.93) 3.564 1.65 0.73 
Tall cuboid (AR = 10) 3.945 3.15 1.63 
Prolate spheroid (AR = 10) 4.195 11.52 6.31 

Table 2 Comparison of blended model and numerical results 

% difference 
Body n Maximum rms 
Circular disk (AR = 0) 
Rectangular strip (AR = 0) 
Square disk (AR = 0.1) 
Cube (AR = 1) 
Tall cuboid (AR = 2) 
Oblate spheroid (AR = 0.5) 
Prolate spheroid (AR = 1.93) 
Tall cuboid (AR = 10) 
Prolate sDheroid (AR = 10) 

1.10 
1.07 
1 .os 
1.05 
1.03 
0.99 
0.99 
0.96 
0.87 

1.83 
1.28 
1.44 
1.95 
1.65 
0.82 
1.59 
2.08 
2.06 

0.80 
0.62 
0.67 
1.04 
0.81 
0.36 
0.53 
1.13 
1.34 

Table 3 Blending parameter recommendations 

Body Aspect ratio n 

Spheroids 

Oblates and prolates 0.5 < AR < 2 1.0 
Tall prolates 2 < AR < IO  0.9 

Cuboids 
Infinitely thin disk A R- 0  1.07 
Thin disks and cubes 0.1 < AR < 1 1.05 
Tall cuboids A R = 2  1.03 
Square cylinders 2 < AR < I O  0.96 

Infinitely thin disk A R = O  1.1 

while bodies with large aspect ratios need blending parameters 
smaller than 1. More specific recommendations are presented 
in Table 3. These blending parameters have been recom- 
mended based on the numerical results, and as such, may 
contain inaccuracies due to errors and approximations in the 
finite volume solutions. 

Conclusions 
A model for full-time solutions for transient heat conduc- 

tion from isothermal convex bodies has been developed by 
combining the short- and long-time asymptotes, correspond- 
ing to the half-space solution and the conduction shape factor. 
It has been demonstrated that by using the square root of the 
active body surface area as the characteristic body length in 
nondimensionalizing the time and heat flow quantities, all 
short-time values for arbitrary convex bodies are reduced to 
a single asymptote. In the case of long-time values, the use 
of this characteristic length has been shown to greatly reduce 

the range of variation of the conduction shape factor for all 
body shapes. The linear superposition model, when compared 
to numerical full-time results for a wide variety of body shapes 
and aspect ratios, gave good agreement for bodies with aspect 
ratios near unity, but showed larger variations for very thin 
or very tall bodies. In order to  increase the accuracy of the 
model for these extreme cases a blended superposition model 
was introduced, resulting in a significant improvement in the 
agreement between the model and the numerical values over 
the range of bodies tested. Recommended values for this 
blending parameter have been presented as a function of both 
the aspect ratio and body shape. 
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