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ABSTRACT

. A novel method of nondimensionalization of shape
«factors using the square root of the total surface area
is presented. A diffusion length which is related to the
shape factor is proposed for steady conduction from
isothermal complex convex bodies. The dimensionless
hape factors and diffusion lengths are found for many
body shapes which include the ellipsoid and related bod-
ies such as the sphere, oblate and prolate spheroids, cir-
cular and elliptic disks. Many other body shapes with
different aspect ratios are also presented. These include
single and double cones, hemisphere, circular and ellipti-
~ cal toroids, the lens, two-tangent spheres, two intersect-
-ing spheres, solid spherical cap, right circular cylinder,
tircular annulus and the rectangular annulus. Corre-
lation equations of numerical results are presented for
body shapes which do not have analytical solutions. All
dimensionless shape factors and dimensionless diffusion
lengths are shown to be weakly dependent on the body
shape and aspect ratio.
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the first kind

single and double cone heights, m
ellipsoid integral

modified Bessel function of
first kind '
complete elliptic integral of
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O Subscripts
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arbitrary characteristic length, m

a =

VA =

e = electric quantity

' — based on L, as the characteristic length, m

o — at a remote point from the body
Superscripts

0 = on the body surface

« = dimensionless quantity

Greek Symbols

B = ellipsoid aspect ratio, b/a
T = Gamma function
5 = ellipsoid aspect ratio, c/a
K — modulus of incomplete elliptic integral
A = diffusion length, m
€ — radii ratio of circular annulus; permittivity
L ~ Polygamma function
¢ = amplitude of incomplete elliptic integral
é, . = dimensionless temperature and
electric potential
v = space variable
0 = temperature rise above ambient, K
P — radius or radii ratio, m
Miscellaneous
A = area integral
W = width of circular and rectangular annulus
INTRODUCTION

Shape factors of isothermal three-dimensional bod-
ies of complex shapes and small-to-large aspect ratios
are of considerable interest for applications in the nu-
clear, aerospace, microelectronic and telecommunica-
tion industries. The shape factor S also has applica-
tions in such diverse areas as antenna design, electron
optics, electrostatics, fluid mechanics and plasma dy-
namics (Greenspan, (1966)).

In electrostatics, for example, the capacitance C is
the total charge Q. required to raise the electric po-
tential ¢ of a body to a value V, and the relationship
between them is (e.g. Greenspan (1966), Jeans (1963),
Kellogg (1953), Mason and Weaver (1929), Morse and
Feshbach (1953), Smythe (1968), Stratton (1941), Van
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Bladel (1985), and Weber (1965))

= %- 2//.4 ——e%d}i (1)

based on V4, as the characteristic length, m yhere € is the permittivity of the surrounding space, ¢,

is the dimensionless electric potential, n is the outward-
directed normal on the surface, and A is the total area
of the body.

Mathematicians prefer to deal with the capacity c*
of a body which they (e.g. Szego (1945) and Polya and
Szego (1951)), defined as

_ 1 [[ 04
0*—471'_//‘;—371(114 )
The conduction shape factor S is defined as
Q / 3¢
S L ————— T — e
T~ ) am )

where k is the thermal conductivity, To is the temper-
ature of the isothermal body, T is the temperature of
points remote from the body, and ¢ is the dimensionless
temperature.

The relationships between the shape factor S, the ca-
pacitance C and the capacity C* are

S= 96'- = 4xC* 4)
The three parameters have units of length.

Analytical solutions are available for a small num-
ber of geometries such as the family of geometries re-
lated to the ellipsoid (e.g. sphere, oblate and prolate
spheroids, elliptical and circular disks). Precise numer-
ical values of S for other axisymmetric convex bodies
have been obtained by various numerical methods such
as the method proposed by Greenspan (1966) and the
method proposed by Wang and Yovanovich (1994). .

Chow and' Yovanovich (1982) showed, by analytical
and numerical methods, that the capacitance is a slowly
changing function of the conductor shape and its aspect
ratio provided the total area of the conductor is held
constant.

Wang and Yovanovich (1994) showed that the dimen-
sionless shape factor '

_SE_Lf[_ % 5
s*ﬁ_A_A//A 594 (6)

where the characteristic scale length L was chosen to
be +/A as recommended by Yovanovich (1987s), whes -
applied to a range of convex bodies including disks 3“.‘!, :
plates is a very weak function of body shapes and thar

aspect ratios.




One objective of this work is to report and demon-
strate through the inclusion of additional accurate nu-
erical results of Greenspan (1966) for complex body
hapes such as a cube, an ellipsoid, circular and ellipti-
cal toroids, and a lens which is formed by the intersec-
tion of two spheres that S* 7 is indeed a relatively weak
function of the body shape and its aspect ratios.

A second objective is to introduce the geometric
length A which is called the diffusion length, and to
show that this physical length scale is closely related to
the square root of the total body surface area.

A new dimensionless geometric parameter \/Z/ A will
be proposed as the appropriate parameter for determi-
nation of shape factors, and the capacitance or capacity
of complex bodies.

CONDUCTION LENGTH

Problem Statement

The problem of interest is to obtain the dimension-
less steady-state heat flow rate Q" for an isolated con-
vex body of arbitrary shape loosing heat to an isotropic
medium whose conductivity k is constant. We seek the
solution to the following mathematical problem:

Vi =10 (6)

with the dimensionless potential ¢ = (T'(7) — Teo )/ (To —
Tw ), and the temperature of the isothermal body is Tg
and T(7) — T as 7 — 0.

The Dirichlet boundary conditions become ¢ = 1 on
the body where 7 = 73 and ¢ — 0 as ¥ — oo.

Conduction Length and Dimensionless Heat
Flow Rate

The total heat flow rate from the body into the sur-
unding medium is obtained by means of the surface
integral
L 0

.Q=kb ——dA 7
: o=k [[ -5 ()
: vhere A is the total surface area of the body, n is the
cutward-directed normal to the body, and 6 is the tem-
perature rise of the body above its surroundings.

| The conduction length A is introduced in the follow-
‘ing equation which assumes linear conduction through
& “tube” of arbitrary, but constant cross-section 4, the
a;w conductivity is k, and the temperature drop is
'R

Q=kA ®)

’ toc°n.1p&ting the two equations for Q we obtain the
llowing mathematical definition for the conduction

length
1_1 o¢
A A //A andA ©)

which reveals that A is the reciprocal of the area-mean
value of the surface gradient 3/0n.
The dimensionless total heat flow rate is defined as

. QL
Q=7 A6, (10)
where L is an arbitrary characteristic length of the body.
Yovanovich (1977a,b, and 1987a,b,c) has shown that
when £ = v/A is used to nondimensionalize conduction
solutions, the results become weak functions of the body
shape, its aspect ratios and its orientation. The dimen-

sionless heat flow rate can be written as

va

= (11)

The dimensionless heat flow rate is seen to be the
ratio of two length scales; i.e. the square root of the to-
tal surface area of the body and the conduction length.
Yovanovich (1987a,b,c) has demonstrated that this ra-
tio has a minimum value of 3.192 when the body is a
circular disk, a value of 3.388 for a cube, a value of
2./% = 3.545 for a sphere, and a value of 4.040 for a
prolate spheroid and a right circular cylinder when their
aspect ratios are 8, and 4.080 for an elliptical disk when
its aspect ratio is 8. This interesting property of the
geometric-physical parameter VA/A will be examined
in the subsequent sections.

SHAPE FACTORS OF ELLIPSOIDS: Integral
Form

The capacity and/or the capacitance of isopotential
ellipsoids are considered in several texts and Handbooks
such as Flugge (1958), Jeans (1963), Kellogg (1953),
Mason and Weaver (1929), Morse and Feshbach (1953),
Smythe (1968) and Stratton (1941).

The capacity of an isopotential ellipsoid a > b > ¢
was given in integral form (Szego, 1945):

11 /°° dv
C* " 2Jy /(& +v)(B? +v)(c* + )

(12)

where v is a space variable. This expression will
be used to develop the dimensionless shape factor of
isothermal ellipsoids. Since S = 4xC*, we can set the
space variable v = a?t, where ¢ is now a dimensionless
variable. Next we normalize the two smaller axes: b,c
of the ellipsoid with respect to the largest semiaxis a
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such that 8 = b/a, and v = c/a. This will lead to the
following dimensionless integral:

= I(8,7)

e dt
/o VA +)(B+1)(r* +1)

0<y<p<Ll

(13)

with

The ellipsoid integral can be expressed in terms of
the incomplete elliptic integral of the first kind F(x, 9)
(Byrd and Friedman (1971), Magnus et al. (1966)):

IB,v) = \/——1'—2_=—7—

2
F(sin'ls/l— 2,/1:{::) (14)

where x and ¢ are the modulus and amplitude angle
respectively.

The ellipsoid integral reduces to several special cases
which will be examined next.
Sphere: a=b=ciandf=7=1

\—»’I

1(1,1)=/0°°(T£§/—2=2 (15)

which gives S = 4ra, a well-known result.
Circular Disk: a=b,c=0;and 8 =1,7=0

* dt
1(1,0) = '/0 m =7 (16)

which gives S = 8a, also a well-known result.
Elliptic Disks: a > b, c=0; and 0<8<1,vy=0

[ dt _ —
1o = [ s - ﬁ? )
17

where K (k) is the complete elliptic integral of the first

kind of modulus k = /1 — 2. There are several meth-
ods available to compute accurately the complete elliptic
integral (Abramowitz and Stegun (1965). Here are two
simple approximations:

02<B<1 (18)

x(VI=F) ~ vy
and

0<B<02 (19)

(/7)== )

Oblate Spheroids: a = b > ¢; and 3=1,0>v<1

® dt 2
I(l,y) = / = cos™!
) o (1+t)v7?+1 1-72 7
(20)
Prolate Spheroids: a >b=¢; 8=7<1
* dt
Itr, / . —
) o (PP+1V1+t
1 14 y1—172
= m|I1EY_ZT ) (2
Ji-y [1-y1-72

The above results correspond to an important family
of axisymmetric, convex geometries; they are presented
in terms of the capacity in various mathematical texts
and in terms of the capacitance in most electromagnetic
texts.

The results presented in dimensional form or in nondi-
mensional form as given above do not reveal an impor-
tant property which this family of geometries and other
geometries have when the appropriate physical charac-
teristic scale length is used for the nondimensionaliza-
tion.

The numerical values of S% of oblate spheroids (8 =
1,0 < 4 < 1), of prolate spheroids B=7127v2
0.10), and of elliptic disks (0 <8 < 1,7 = 0) are pre-
sented in Tables 1-3.

Table 1: Shape Factors and Diffusion Lengths of

Oblate Spheroids
s | %

12.5664 | 3.54491
10.3923 | 3.52903
9.62476 | 3.49392
9.23085 | 3.45939
8.99090 | 3.42994
8.82932 | 3.40553
8.71308 | 3.38530
8.62546 | 3.36841
8.55700 | 3.35413
10 | 8.50206 | 3.34194
10% | 8.05085 | 3.21098
10% | 8.00509 | 3.19356
10% | 8.00051 | 3.19174

©| 00| =} & enf x| co} vot e [0l®

The dimensionless shape factor range for the oblate
spheroids is 8 < S¥ < 4. The greatest and least values
correspond to the sphere and the circular disk respec-
tively. The radii of the disk and sphere are set to one
unit.
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The dimensionless shape factor range for the prolate
spheroids is approximately 4.177 < Sk < 4r for the
aspect ratio range 1 < a/b < 10. The major axis is

= %2a = 2.

Table 2: Shape Factors and Diffusion Lengths of Pro-

late Spheroids
s | %

12.5664 | 3.54491
8.26359 | 3.56613
6.72115 | 3.62769
5.89664 | 3.70638
5.37092 | 3.79053
5.00047 | 3.87533
4.72205 | 3.95878
4.50319 | 4.04005
4.32539 | 4.11883
4.17723 | 4.19508

S|~ o onl i eo| 0| mpriR

Table 3: Shape Factors and Diffusion Lengths of El-

liptic Disks
s | v

8.00000 | 3.19154
5.82716 | 3.28763
4.96964 | 3.43397
4.48606 | 3.57936
4.16641 | 3.71670
3.93511 | 3.84541
3.75763 | 3.96618
3.61576 | 4.07995
3.49888 | 4.18755
3.40033 | 4.28974

] cof po| iR
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The dimensionless shape factor range for the elliptic
disks is approximately 3.4 < S* < 8. The greatest value
corresponds to a circular disk of unit radius, and the
least value corresponds to an elliptical disk with a ten-

‘to-one aspect ratio.

Clearly the overall range for all values presented in
the three tables is quite large. The ratio of the largest
and smallest values is approximately 3.7. These values
correspond to the sphere and the large aspect elliptical
disk respectively.

SURFACE AREA OF ELLIPSOIDS

The expression for the total surface area of ellipsoids
is written as

A B
2ra? v+

[v*F(¢,5) + (1 = 7*)E(4, 5)]

= A(B,7) (22)

1— (12 1/2
¢ =cosly and K= (——(—ﬂl)

with

1—~432

The total surface area related to the semimajor axis is
seen to be a function of the two aspect ratios: 8 and
4. The special functions F(¢, x) and E(¢, ) are incom-
plete elliptic integrals of the first and second kind respec-
tively. They depend on the amplitude angle ¢ and the
modulus k. These special functions can be computed
quickly and accurate by means of Mathematica (Wol-
fram, 1991). Their properties are given in Abramowitz
and Stegun (1965).

The relationship between the square root of the total
surface area and the semimajor axis is

SN ) (23)

SHAPE FACTOR AND DIFFUSION LENGTH
OF ELLIPSOIDS

The dimensionless shape factor S* oy and the proposed

dimensionlesss diffusion length v/A/A of isothermal el-
lipsoids can be obtained from the shape factor integral

I(B,v) and the relationship 30‘@ given above. It is

VA 4v/2%
g = Y4 _
VAT R T Ieyvaey oY

The functions which appear in the above expression were
computed quickly and accurately using Mathematica.
The numerical values for oblate spheroids are presented
in the third column of Table 1. The range of values has
been significantly reduced. The ratio of the values for
the sphere a/c = 1 and the circular disk a/c — oo has
been reduced from 1.57 to 1.11.

The numerical values for prolate spheroids are pre-
sented in the third column of Table 2. Here the reduc-
tion in the range is much greater. The ratio of the val-
ues for the sphere a/b = 1 and the long prolate spheroid
a/b = 10 has been reduced from 3.0 to 1.18.

The numerical values for elliptic disks are presented
in the third column of Table 3. Here, also, we observe
that the reduction in the range is much greater. The
ratio of the values for the circular disk a/b = 1 and the
long elliptic disk a/b = 10 has been reduced from 2.35
to 1.34.

sin ¢
L
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There is another benefit using £ = V/A as the charac-
teristic body length. The differences between the values
for the elliptic disks and the prolate spheroids is greatly
reduced, becoming negligible for large aspect ratio. The
largest difference of approximately 11 % occurs when
the aspect ratio is one, i.e. when a sphere and a circular
disk are compared.

The means that elliptic disks (zero thickness bodies)
and prolate spheroids which have identical total surface
areas and identical aspect ratios possess shape factors
which are close in magnitude.

This important finding will be examined further in the
subsequent sections where a wide range of body shapes
will be considered.

The specific expressions for oblate and prolate
spheroids are given here. They are useful for quick cal-
culations of \/Z/ A and they clearly show the trends for
small and large aspect ratios, of axisymmetric, convex
bodies.

Oblate Spheroids

{22 )] ool
(26)

Prolate Spheroids

(fs 2ot ((22)) 0

where v = ¢/b and e = /1 — u?, which is called the
eccentricity. The aspect ratio is AR = u for the oblate
spheroids and AR = 1/u for the prolate spheroids.

If the aspect ratio of the prolate spheroid is greater
than 8, the solution approaches the asymptote:

S 4/AR
VA~ In(24R)

OTHER BODY SHAPES

The shape factors and the diffusion lengths of sev-
eral other body shapes will be considered next. They
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include two-tangent spheres, two intersecting spheres,
solid spherical caps (Fig. 2), single and double solid
cones, circular toroids (Fig. 1), an elliptic toroid,
right circular cylinders, circular and rectangular annular
plates.

Some of the body shapes to be considered have ana-
lytic solutions which will be presented. For those body
shapes which do not possess analytic solutions, various
numerical methods are used to find accurate numerical
values which are correlated for applications.

Two-Tangent Spheres

The analytic solution for the capacitance of two
tangent spheres (Jeans (1963), Smythe (1968), Weber
(1965)) is converted to the dimensionless shape factor

a b
—2mab {1.1544 — —_—
VA e ( 3+‘Il(amt-b).*-\lf(a+b)

VA= 3 @+t /7@ + )

28
where a and b are the sphere radii respectively. gI‘he):
PolyGamma function ¥ = I''/T and its properties are
given in Abramowitz and Stegun (1972). They are ac-
curately computed by means of Mathematica.

If a = b, the two-tangent spheres solution reduces to
the bisphere solution: S*JI = 3.4749, and if a >> b, the
two-tangent spheres solution goes to the single sphere
solution: S*ﬁ = 3.5449. The maximum difference is

less than 2 %.

Two Intersecting Spheres

The shape factor for two isothermal spheres intersect-
ing orthogonally and having radii a and b respectively
can be obtained from the closed-form capacitance solu-
tion which is based on the Kelvin transformation (Jeans
(1963), Smythe (1968), Weber (1965)),

C [(a +b)(a? + b2)1/2 — ab]

S=—€—=4ﬂ' (a2+b2)1/2

(29).

The total surface area is

A 1 1 p
ra = 2 [” Ve id (“ ¢——1—+;,)] e

with the radii ratio p = bfa < 1. The dimensionless
shape factor is obtained from the above relationships:

Sq = \/2_2\/;{(1+p)(1+p’)”’—p],

A (1+p?)1/2
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Figure 1: Body Shapes: Sphere, Bisphere, Hemisphere, Oblate and Prolate Spheroids, and Circular Toroid
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Figure 2: Body Shapes: Single and Double Cones, and Solid Spherical Cap
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The dimensionless shape factor values vary slowly and
are in close relationship with the shape factor of a

sphere. The largest difference of approximately 1.1%
occurs at p = 1 and the general solution reduces to

VA_, - (2-1/vD)

§* - = = =27
VAT A (1+1/v2)

Solid Spherical Caps

The accurate numerical results of Wang (1993) for the
solid spherical cap shown in Fig. 2 are correlated very
accurately by means of the fourth-order polynomial:

Sz = 3.1946+0.77247 2 — 0.66657 z?

+0.51175 z® — 0.26935 =* (32)
where ¢ = 6/180 and 26, is the subtended angle which
is related to the height-to-diameter ratio: tanf, =
D/(2H).

When 8y = 1/2 degree, S*ﬁ = 3.1956 in close agree-
ment with the circular disk result. When 6 = 90 de-
grees, the spherical cap becomes the solid hemisphere
and S*ﬂ = 3.4606, and when 6y = 180 degrees, the
spherical cap becomes a sphere and S* - = 3.5449.
Again we observe a relatively small variation of the di-
mensionless shape factor for a wide range of aspect ra-
tios.

The single and double cones are shown in Fig. 2.

They represent two interesting families of axisymmetric
bodies.

Single Cone

The single cone numerical results of Wang (1993)
are correlated accurately by means of the following two
polynomials:
if0.001<z=H/D<1

Stz = 3.19399 + 0.629823z — 0.9337312?
+0.862597z% — 0.312459z* (33)

and for the range: 1< z=H/D <8
Stz = 3.280967 + 1.61022(=/10) - 0.047366(z/10)>

— 0.30067(z/10)% + 2.99117 x 10~3(=/10)%(34)
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Double Cone

The numerical data of Wang (1993) are accurately
correlated by the following two fourth-order polynomi-

als:
for the smaller range: 0.001 <z = H/D < 1:

Stz = 3.194264+ 0.626604x — 0.477791z?

+ 0.07510562° + 0.0531827=* (35)

and for the larger range: 1 <z = H/D < 10:
Sz = 3.41318+0.419048(z/10) + 2.02734(z/10)?

- 2.23961(x/10)® + 0.80661(z/10)* (36)

Circular Toroid

The circular toroid of ring diameter d and toroid di-
ameter D as shown in Fig. 1 has an analytic solution
which is presented in detail in Smith (1992). The solu-
tion is in the form of a series:

Sz = '\/X‘Z=% §—-1/¢
Q- 1/2(5) Qn-1/2(8)
{P 1/2(6) Z P I/z(e)} (1)

with £ = D/d > 1. The functions which appear in the
solution are Toroidal (or ring) functions whose proper-
ties are given in Abramowitz and Stegun (1965). The
special functions appearing in the above solutions can
be accurately computed using Mathematica.

The series converges very slowly for D/d — 1.

For D/d > 5 the dimensionless shape factor for the
toroid approaches the asymptote:

_ VA _2x/Djd
=2 ~h@D/g (3)

S
Bouwkamp (1958) used a simple method based on the
Kelvin tranformation to obtain the capacitance for the
limiting case of a toroid without a hole, i.e. D/d = 1.
The integral solution is cast in the form of the dimen-
sionless shape factor:

VA _38

_ * Ko(t)
Si=3 =% To(t)

8§ = 1
e ) mmr®

where Io(t) and Ko(t) are modified Bessel functions
of the first and second kind respectively. Numerical
integration of either form by Mathematica gives the
value S~ = 3.482761 which is in good agreement with




the series solution which converges slowly to the value
.S"'\/-A- = 3.480 for D/d = 1.01.

It is worth noting that the dimensionless shape factors
for the toroid without a hole and the bisphere differ by
less than 0.2 %.

Right Circular Cylinder

The capacitance for an isopotential right circular
cylinder of length L and diameter D was given by
Smythe (1956, 1962). It is used to develop the following
expression for the dimensionless shape factor or dimen-
sionless diffusion length:

JA 31915 (1 +0.8688 (L/D)“")

Sa=5 = Jii2L/D

(40)

where 0 < L/D < 8.

This correlation equation has an accuracy of 0.2%
or better and it is in perfect agreement with the ex-
pression for the shape factor for a circular disk L/D =
0. Yovanovich (1987a) showed that in the range 0 <
L/D < 1, the values of v/A/A for the right circular
cylinder are in close agreement with the values for oblate
spheroids which have identical total surface areas and
nominally similar aspect ratios.

In the range 1 < L/D < 8, the values of vVA/A for the
right circular cylinders and the prolate spheroids hav-
ing identical total surface areas and nominally similar
aspect ratios are in very close agreement (Yovanovich,
1987a). The largest difference which occurs when
L/D = 1is less than 1 %.

CIRCULAR ANNULUS

The capacitance of an isopotential circular annulus
of inner radius a and outer radius b was presented by
Smythe (1951). The two capacitance solutions are recast
‘into the following two expressions for the dimensionless
shape factor or the dimensionless difffusion length:

_\/Z_ 1+e€ 1
Sffz—'“[“"m l—e.1n16+1n[(1+5)/(1'i€)])
: 41

which is restricted to the range: 1.000 < 1/e < 1.1; and

o VA 8\/7 1
VA T A TV
A TV w1 -¢2
X [cos"1 €e+v1—¢€? tanh~! e]

x [1+0.0143¢~tan®(1.28¢)]  (42)
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which is valid in the range: 0 < ¢ < 1/1.1. The pa-
rameter 0 < ¢ = a/b < 1 is related to the parameter
2w/ D:

e:]_——-D— (43)

and W = b — a is the annulus thickness.

RECTANGULAR ANNULUS

Here we consider the rectangular annulus which is de-
fined by its outer length L and outer width W. The
width W of the annular area is uniform. The interior
open region has dimensions L — 2W by W — 2W.

The dimensionless shape factor for the isothermal
rectangular annulus is derived from the correlation
equation of Schneider (1978) who obtained accurate nu-
merical values of the thermal constriction resistance of
doubly-connected rectangular contact areas by means of
the Boundary Integral Equation Method:

VA

S*ﬁ = =X
_ V2
- [C1 (%'VW e +Ca]
1/2
% + %,— _2 (%’)2] (44)
with the recommended correlation coefficients:
Cy= —0.00232-—% +0.03128 (45)

-1
C; = 0.2927 (% + 0.7463) +0.4316  (46)

-1
Cs = 0.6786 (—VLF + 0.8145) + 0.0346 (47)
The correlation equation is restricted to the ranges: 1 <
L/W < 4 and 0.01 < W/W < 0.5 with a maximum
error of 1.45 % between the correlation predictions and
the numerical values. Selected values of the shape factor
are given in Table 4.

It is clearly seen that the dimensionless diffusion
length is a weak function of the two parameters: L/W
and W/W over an interesting range of these parame-
ters. The values are close to the circular and elliptic
disk values.

The circular and square annular plate diffusion
lengths can be compared over a wide range of the outer
diameter D to thickness W ratio D/W provided we se-
lect the appropriate parameter for the square annulus.




Table 4: Dimensionless Diffusion Length of Rectan-
gular Annulus

LI w YA
w W A
1 |0.13.2918
0.2 | 3.2132
0.3 ] 3.1978
0.4 | 3.2429
0.5 | 3.3575
2 | 0.1] 3.4893
0.2 | 3.4270
0.3 | 3.4044
0.4 | 3.4177
0.5 | 3.4681
3 | 0.1]3.7001
0.2 | 3.6389
0.3 | 3.6106
0.4 | 3.6102
0.5 | 3.6370
4 [0.1] 3.8774
0.2 | 3.8153
0.3 | 3.7829
0.4 | 3.7744
0.5 | 3.7884
Setting D W_w
W W

allows one to compare the dimensionless diffusion
lengths as seen in Table 5. For the circular annulus
range 1 < D/W < 99 the corresponding square annu-
lus parameter range is 0.5 > W/W > 0.01, the v/A/A
values are close. The variation is small in the range
1 < D/W < 4 and the two geometries have similar val-
ues which are close to the other body shapes. For thin
annular regions 4 < D/W < 99 the values change more
rapidly and they are closer to the long prolate spheroid
values or long elliptic cylinder results or similar to the
large open circular toroids results.

NUMERICAL RESULTS OF GREENSPAN

Greenspan (1966) obtained accurate numerical values
of the capacitance of five complex body shapes by means
of a novel transformation followed by the application of
the finite difference method to the tranformed domain.

He gave results for a unit cube, an ellipsoid (a = 9,b =
4,c = 1), alens formed by the intersection of two spheres
having different radii, a circular toroid and an elliptical
toroid. The capacity C* reported by him are given in
Table 6 where it is seen that the smallest value corre-
sponds to the cube and the largest value corresponds
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to the circular toroid. The range of calculated values
0.661 < C* < 4.89 is seen to be quite large.

Table 5: Dimensionless Diffusion Length: Square and
Circular Annulus :

Wl lval b 1v/a
Wl AW | A
01[10.0 ] 99 | 10.6
.05 | 6.20 | 19 | 6.01
10 | 4.86 | 9 | 4.76
.20 | 3.85 4 3.84
.30 | 3.44 | 2.33 | 3.45
40 | 3.27 | 1.50 | 3.26
50 | 3.23 | 1.0 | 3.19

The corresponding total surface areas and the pro-
posed dimensionless shape factors and dimensionless dif-
fusion lengths are also given in Table 5.

The dimensionless values are found to lie in the
greatly reduced range 3.391 < vA/A < 3.609. The
maximum and minimum values of v 4/A are reported
for the circular toroid and the unit cube respectively.
The difference is approximately 8.5 %. The dimension-
less diffusion length for the cube is approximately 4.5 %
lower than the value for the sphere, and the dimension-
less diffusion length for the circular toroid is approxi-
mately 3.8 % greater than the value for the sphere.

Table 6: Dimensionless Shape Factors: Cube, Lens,
Ellipsoid, Circular and Elliptical Toroids of Greenspan
(1966)

Body Shape cr | A |s =Y
Cube 0.661 6 3.391
Lens 2.29 | 63.577 3.609
Ellipsoid 4.26 | 245.8 3.415
Circular Toroid | 4.89 | 279.16 3.678
Elliptic Toroid | 1.703 | 36.451 3.546

CONCLUDING REMARKS

A new dimensionless diffusion length which is related
to the well-known dimensionless shape factor has been
proposed. This body length scale is closely related to
the square root of the total surface area of convex singly
connected geometries such as ellipsiods which reduce to
spheres, oblate and prolate spheroids, elliptical and cir-
cular disks. The dimensionless diffusion length is found
to be a weak function of the body shape and aspect
ratio. This property was tested using the shape factor
of other body shapes such as a right circular cylinder
which has dimensionless diffusion lengths close to those




of oblate spheroids when the cylinder length-to-diameter
ratio is between zero and one, and the values are close
to those of prolate spheroids when the aspect ratios are
similar and greater than one.

Other analytic solutions are given for the solid hemi-
sphere, two-tangent spheres, two intersecting spheres
and the circular toroid. In all of these cases the dimen-
sionless diffusion length was found to be a weak function
of the body shape and its aspect ratio.

Accurate correlation equations are presented for the
solid single cone, the double cone and the solid spheri-
cal cap. The solid spherical cap ranged from a thin cap
which is similar to a circular disk, the solid hemisphere,
and finally the sphere. For these body shapes the di-
mensionless diffusion length was found to be closely re-
lated to the other body shapes, and also to be weakly
dependent on its shape and its aspect ratio.

The dimensionless shape factors and diffusion lengths
of circular and rectangular annular plates were de-
rived from published capacitance, capacity and constric-
tion resistance results. Accurate correlation equations
are presented for these two doubly connected bodies.
The dimensionless diffusion length for these bodies are
closely related to each other and closely related to the
singly connected convex bodies.

Other body shapes considered are the cube, an elliptic
toroid and a lens. The proposed dimensionless diffusion
length was found to be close to the value of a sphere.

The final conclusion is that bodies which have iden-
tical total surface areas and have similar aspect ratios
will have closely related dimensionless shape factors and
diffusion lengths. Therefore, it is possible to estimate
quite accurately the shape factor and the heat transfer
characteristics of bodies of arbitrary shape.
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