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Abstract

General models are proposed for natural convec-
tion from horizontal isothermal thin elliptic disks.
The models are based on the linear superposition
of the corresponding di�usive limits (shape factors)
and the laminar boundary layer asymptotes. The di-
mensionless shape factor for the elliptic disk is based
on a modi�cation of the Smythe solution for the �-
nite circular cylinder. A comprehensive procedure is
presented that leads to a complex formulation of the
body-gravity function. A simpler procedure based
on the method of inscribing and circumscribing cir-
cular cylinders within the elliptic cylinder yields a
simpler expression for accurate evaluations of the
body-gravity function. The Nusselt and Rayleigh
numbers, and the dimensionless shape factor and
body-gravity function are based on the character-
istic body length proposed by Yovanovich, i.e., the
square root of the total surface area of the body.
The proposed models are compared against air data
obtained over eight decades of the Rayleigh number
for three thin elliptic disks having a range of aspect
ratios. The agreement between theory and experi-
ment is shown to be excellent.

Nomenclature

A = surface area of the body; m2

~A = area fraction
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~Ai = area fraction of the ith componentp
A = characteristic length of the body

proposed by Yovanovich2; m

AR = aspect ratio of elliptic disk;

AR = L=
p
ab

a; b = major and minor axes of ellipse;

a � b

DGM = geometric-mean diameter of

elliptic disk; DGM =
p
a b; m

E(�) = complete elliptic integral of second

kind of modulus � =
p
1� (b=a)2

F (Pr) = Prandtl number function5;

f
�
0:670=[1+ (0:50=Pr)9=16]4=9

�
g = scalar gravitational acceleration;

m=s2

GpA = laminar boundary layer body-

gravity function based on
p
A

GrpA = Grashof number;

g�(Ts � Ta)(
p
A)3=�2

h = heat transfer coe�cient; W=m2�K
k = thermal conductivity; W=m�K
L = elliptic disk thickness; m

NupA = Nusselt number; h
p
A=k

Nu1p
A

= di�usive limit; Nu1p
A
= S?p

A

P (�) = local perimeter; m

Pr = Prandtl number; �=�

RapA = Rayleigh number; GrpAPr

RMS = Root-Mean-Square value
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S?p
A

= dimensionless shape factor

Ta = ambient temperature; K

Ts = surface temperature; K

Tf = �lm temperature; (Ts + T1)=2; K

Subscriptsp
A = based on characteristic length

p
A

Superscripts

1 = estimated at Ra! 0

~ = dimensionless quantity

� = dimensionless quantity

Greek Symbols

� = volumetric expansion coe�cient; K�1

� = angle between gravity vector and

outward normal to surface; rad

� = kinematic viscosity; �=�; m2=s

� = density; kg=m3

Miscellaneous

bot = bottom surface area of elliptic disk

side = side surface area of elliptic disk

top = top surface of elliptic disk

total = total surface area of elliptic disk

Introduction

Models to predict natural convection heat trans-
fer over a wide range of the Rayleigh number from
thin convex bodies which possess horizontal surfaces
facing upward and downward with respect to the
gravity vector are presently not available in the open
literature. Experimental data are also unavailable to
develop correlation equations. The di�culty lies in
modeling the contribution of the horizontal surfaces,
in particular when they constitute more than 50% of
the total active surface area.

The objectives of this paper are: 1) to present a
procedure for development of a general model that
can accurately predict the Nusselt number Nu for
thin horizontal elliptic disks over several decades of
the Rayleigh number Ra; 2) to develop simple gen-
eral correlation equations from the proposed general
model; and 3) to compare the correlation equations
against the air data of Jafarpur10.

The proposed thin elliptic disk model should
be capable of predicting natural convection from
thin horizontal circular disks and other body shapes
which are similar such as thin oblate spheroids.

General Model for Isothermal Convex

Bodies

The general expression for natural convection
heat transfer from three-dimensional isothermal con-
vex bodies

NupA = Nu1p
A
+ F (Pr) GpA Ra

1=4p
A

(1)

was �rst proposed by Yovanovich21;22;23. This rela-
tionship is based on the linear superposition of the
di�usive limit (shape factor) Nu1p

A
corresponding to

RapA = 0 and the laminar boundary-layer asymp-

tote F (Pr)GpA Ra
1=4p
A
which is valid for large values

of the Rayleigh number.
The laminar boundary-layer asymptote consists

of the product of the Prandtl number function
F (Pr), the body-gravity function GpA, and the
Rayleigh number RapA. The characteristic length
in the Nusselt and Rayleigh numbers and the body-
gravity function is the square-root of the total ac-
tive surface area

p
A which was �rst proposed by

Yovanovich21;22;23 for natural and forced convec-
tion heat transfer from bodies of arbitrary shape.
Yovanovich had previously used this characteris-
tic length to nondimensionalize thermal constric-
tion resistance (Yovanovich et al19. Yovanovich
and Schneider18 Yovanovich and Burde20 and con-
duction shape factors (Yovanovich17, Chow and
Yovanovich4, Yovanovich and Wang24.

The laminar Prandtl number function

F (Pr) =
0:670�

1 + (0:5=Pr)9=16
�4=9 (2)

was recommended by Churchill and Churchill5 as
the universal function valid for all geometries and
all values of the Prandtl number.

The body-gravity function

GpA =

"
1

A

Z Z
A

�
P (�)p
A

sin �

�1=3

dA

#3=4
(3)

was recommended by Lee, Yovanovich and
Jafarpur11 for axisymmetric and two-dimensional
geometries.

The proposed three-dimensional model, Eq. (1)
has been experimentally validated (Jafarpur10) for
a range of body shapes such as i) axisymmet-
ric spheroids (oblate and prolate), sphere, ii) two-
dimensional elliptic and circular cylinders, iii) thin
circular and square plates in the vertical and hori-
zontal orientation, and iv) other body shapes (cube,
cones with apex facing upward and downward).
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Composite Body-Gravity Function For

Complex Body Shapes

Buoyancy-induced ow over complex body
shapes can be modelled by i) partitioning the total
body surface into component surfaces corresponding
to the uid ow, and ii) using the general formula,
Eq. (3), for each component surface Ai to �nd the
corresponding body-gravity function GpAi .

The overall body-gravity function for the to-
tal active body surface is determined by combin-
ing the component surfaces Ai and their respec-
tive body-gravity functions GpAi into a composite
value. Equation (3) can be used for all surfaces ex-
cept horizontal surfaces (sin � = 0) facing upward
or downward. At present semi-empirical methods
must be used to model buoyancy-induced ow over
horizontal surfaces (Jafarpur10, and Yovanovich and
Jafarpur25;26).

There are two important ow patterns for which
the composite or overall body-gravity function can
be determined with relative ease. These are complex
bodies such as a circular cylinder with hemispherical
ends which is placed in a large extent of air in either
the horizontal (axis perpendicular to the gravity vec-
tor) or vertical (axis parallel to the gravity vector)
orientations.

In the �rst orientation the two ends and the hori-
zontal surface are cooled by di�erent ows of air and
the component surfaces are said to be in the parallel
ow pattern. In the second orientation the compo-
nent surfaces are cooled by the same uid ow which
starts at the lower stagnation point, ows over the
lower hemispherical end, then over the vertical cylin-
drical surface, and �nally over the top hemispherical
end. In this case the component surfaces are said to
be in the series ow pattern.

The above method of partitioning a complex
body shape into parallel or series ow patterns can
be applied to many interesting natural convection
problems. Some orientations such as inclined short
cylinders with at ends or hemispherical ends, or
inclined cuboids are more di�cult to model.

If the buoyancy-induced ow over a complex
body shape can be partitioned into N component
surfaces with area-fractions ~Ai where

Pi=N
i=1

~Ai = 1,
and the corresponding body-gravity functions GpAi
can be determined, then the composite body-gravity
function for the entire body surface can be evaluated
by means of either the parallel ow pattern formula:
(Lee-Yovanovich-Jafarpur11):

GpA =
NX
i=1

GpAi
~A
7=8
i (4)

or the series ow pattern formula:

GpA =

"
NX
i=1

G
4=3p
Ai

~A7=6
i

#3=4
(5)

For two-dimensional surfaces, such as vertical
disks or plates of arbitrary shape with variable
perimeter P (z) the body-gravity function can be eas-
ily obtained from the following simple formula which
was derived from Eq. (3) after setting sin � = 1:

GpA =
2

A7=8

Z Pmax=2

0

S(z)3=4 dz (6)

where S(z) denotes the ow distance from the lead-
ing edge to the trailing edge of the di�erential sur-
face dz and Pmax is the maximum perimeter of the
surface.

These formulas along with the semi-empirical re-
sults recommended by Yovanovich and Jafarpur25;26

for horizontal surfaces facing upward or downward
will be used to develop the composite body-gravity
function for the horizontal elliptic disks.

Model Development

Body-Gravity Functions

Three methods are proposed for the determina-
tion of the composite body-gravity function for hori-
zontal elliptic disks. The �rst method is comprehen-
sive, and it requires the computation of the complete
elliptic integral of the second kind (Abramowitz and
Stegun1) for calculation of the component body-
gravity functions. The second simpler method is
based on an approximationof the expression that ap-
pears in the determination of the body-gravity func-
tions for horizontal elliptic surfaces that face upward
and downward. The third simpler method is based
on the approximation recommended by Jafarpur10

for estimating the composite body-gravity function
of vertical cylinders of constant cross-section with
active ends. This method is based on inscribing and
circumscribing vertical circular cylinders inside and
outside the cylinder of interest. Two close estimates
of the required composite body-gravity function are
obtained by this procedure. Finally some average
value is determined by means of the two values so
calculated.

The elliptic disks are characterized by three ge-
ometric parameters: the major axis a, the minor
axis b and its thickness L (see Fig. 1). There are
therefore two aspect ratios that de�ne elliptic disks:
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a=b � 1 and L=
p
ab where

p
ab represents the geo-

metric mean of the major and minor axes.

Comprehensive Model

The �rst model is comprehensive and therefore it
is more complex. It is based on the following com-
ponent body-gravity functions. For the horizontal
surface facing upward the body-gravity function can
be obtained from the general expression (Yovanovich
and Jafarpur25;26):

Gtop =
5

6

"
Pp
Atop

#1=4
(7)

where P is the perimeter of the elliptic disk. Substi-
tuting the expressions for the perimeter of an ellipse
and its surface area Atop = (�=4) ab gives

Gtop =
5

6

�
16

�

�1=8
2
4ra

b
E

0
@
s
1�

�
b

a

�2
1
A
3
5
1=4

(8)
where E (�) is the complete elliptic integral of the
second kind, and the value of the constant before
the square bracket is equal to 1:0214. The values
of the body-gravity function vary slowly for the as-
pect ratio range: 1 � a=b � 10. For a=b = 1 and
a=b = 10, Gtop = 1:143 and 1:367 respectively. The
di�erence is about 20%. The body-gravity function
for horizontal surfaces facing downward is equal to
(Yovanovich and Jafarpur25;26):

Gbot =
1

2
Gtop (9)

For the vertical side surface the body-gravity
function can be obtained from the general expres-
sion developed by Lee, Yovanovich and Jafarpur11

based on the disk perimeter and thickness:

Gside =

�
P

L

�1=8
(10)

Substituting the perimeter of the ellipse gives

Gside = 21=8

2
4 a
L
E

0
@
s
1�

�
b

a

�2
1
A
3
5
1=8

(11)

Examination of the above results shows that the
component body-gravity functions for the horizontal
surfaces are dependent on the ellipse aspect ratio, i.e.
b=a; while the component body-gravity function for
the side surface is dependent on two aspect ratios,

i.e. b=a and a=L. The composite body-gravity func-
tion is obtained by means of the series ow arrange-
ment expression, Eq. (5), which yields the general
formulation:

GpA =
h
G
4=3
top

~A7=6
top + G

4=3
bot

~A7=6
bot +G

4=3
side

~A7=6
side

i3=4
(12)

This model requires the computation of the com-
plete elliptic integral of the second kind of modulus
� =

p
1� (b=a)2. Accurate numerical values can be

obtained by means of Computer Algebra Systems
(CAS) such as Maple12 or Mathematica13. The el-
liptic integral lies in the range: 1 < E(�) � �=2 in
the ellipse aspect ratio range: 0 < b=a � 1.

Approximation for Complete Elliptic Integral

Although E (k) and its complementE
�p

1� k2
�

can be computed by polynomial approximations and
series expansions for small and large arguments
(Abramowitz and Stegun1), for convenience and
completeness of this work, the following expressions
are recommended for quick, accurate computations:

Complete Elliptic Integral

E (k) =
�=2

1 + k1

�
1 +

k21
4
+
k41
64

+
k61
256

�
(13)

where the parameter k1 is de�ned as

k1 =
1�

p
1� k2

1 +
p
1� k2

(14)

This approximation provides 6 digit accuracy every-
where except at k = 1 where the error is approxi-
mately 0:3%.

Complementary Elliptic Integral

E
�p

1� k2
�
=

�

4
(1 + k)

�
1 +

p2

4
+
p4

64
+

p6

256

�
(15)

where p = (1� k)=(1+ k). This approximation pro-
vides 6 digit accuracy everywhere except at k = 0
where the error is approximately 0:3%.

In order to minimize the computational e�ort, a
second model is presented which does not require the
computation of the special function E

�p
1� k2

�
.

Approximation of Gtop and Gbot

Examination of the range of values for Gtop for
the ellipse aspect ratio range: 1 � a=b � 10 sug-
gests that the expression given in Eq. (8) can be
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approximated with acceptable accuracy by:

Gtop = 21=8
�a
b

�1=8
(16)

and Gbot is given by Eq. (9).

Approximate Model

The third method is based on the method of
inscribing and circumscribing right circular cylin-
ders inside and outside the elliptic disk. The body-
gravity function for the vertical circular cylinder
is known (Jafarpur10). It depends on the circular
cylinder aspect ratio which is de�ned as the ratio
of the cylinder length to cylinder diameter. This
approach yields two values of the body-gravity func-
tion which bound the value that is sought as demon-
strated by Jafarpur10. The value of the compos-
ite body-gravity function is then obtained by tak-
ing some average of the two bounding values. It
has been observed by Jafarpur10 that the arith-
metic, harmonic and geometric mean values of the
two bounding results are quite close. The geometric
mean value was recommended. To simplify the pro-
cedure further, the aspect ratio for an elliptic disk
of length L, and major and minor axes: a and b is
de�ned as

AR =
Lp
ab

(17)

The composite body-gravity function for the hori-
zontal elliptic disk can be estimated by means of the
following relationship which was developed by means
of Mathematica13:

GpA = �1=8

�
0:2662 + Lp

ab

�3=4

�
0:5 + Lp

ab

�7=8
(18)

It will be shown later that for the test elliptic disks
that the comprehensive method and the method of
estimating Gtop and Gbot give values of GpA that
di�er by less than 1%; and that the third simple
method give values of GpA that di�er by less than
4% from the more exact values given by the com-
prehensive model.

Di�usive Limit

The di�usive limit for elliptic disks is presently
unavailable. It can, however, be estimated accu-
rately by the method of inscribing and circumscrib-
ing circular cylinders which have accurate analytic
solutions (Smythe14;15). The di�usive limit of �nite

circular cylinders based on the square root of the
total active surface area depends only on the cylin-
der aspect ratio which is de�ned as the ratio of the
cylinder length to its diameter. This approach has
been demonstrated to yield very tight bounds of the
required result (Chow and Yovanovich4; Jafarpur10;
Yovanovich21;22;23;27). Jafarpur10 has demonstrated
that the computations can be simpli�ed by the use
of the geometric mean diameter de�ned as DGM =p
ab. The elliptic disk aspect ratio is de�ned as

L=DGM.
Inserting the above relationship for the elliptic

disk aspect ratio into the di�usive limit for the right
circular cylinder gives

Nu1p
A
=

1p
2�

"
8 + 6:96

�
Lp
ab

�0:76
#

r
1 + 2 Lp

ab

(19)

for the approximation of the di�usive limit of ellip-
tic disks. This relation will provide numerical values
with errors less than 3 % for a � b and L > 0. The
three proposed methods will be compared against air
data obtained for three isothermal horizontal elliptic
disks over a wide range of RapA.

Experimental Results: Thin Elliptic Disks

Elliptic Disk Geometric Characteristics

The three elliptic disks used in the experimental
program (Jafarpur10) have major and minor axes: a
and b, thickness L, aspect ratio L=

p
ab and

p
A as

reported in Table 1.

Table 1: Geometric Characteristics of Elliptic Disks

disk a b L L=
p
ab

p
A

ec1 96 64 6:4 :0815 106:2

ec2 92:6 61:8 9:3 :123 106:1

ec3 89:9 59:8 11:9 :162 106:2

The ellipse aspect ratio a=b was held close to
the value 1:5 for the three disks. The elliptic disk
aspect ratio L=

p
ab ranged from about 8:2 % up

to about 16 %. The total active surface area was
maintained constant to within 1 %, and the char-
acteristic body length was

p
A = 0:1062 m for all

three disks. This characteristic length is seen to be
approximately 11% to 18% greater than the major
axes.
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The fraction of the total active surface area of
the disk ends and the disk side are reported in Ta-
ble 2. There it is seen that the top and bottom
horizontal surfaces contribute about 86 % for the
thinnest disk and 75 % for the thickest disk.

Table 2: Surface Area Fractions of Elliptic Disks

cylinder ~Aends
~Aside

ec1 :856 :144

ec2 :798 :202

ec3 :749 :251

The three elliptic disks were constructed from
highly polished aluminum alloy 6061 T6 to ensure
that they will be isothermal during the convective
heat transfer tests, and that the radiation contribu-
tion will be minimized.

The initial tests were conducted in a special vac-
uum chamber to ascertain the radiation and conduc-
tion losses along the thermocouple and power leads
(Jafarpur10). These losses were correlated and used
in the natural convection data reduction. The air
data reported by Jafarpur10 were obtained in an-
other chamber designed and instrumented for ob-
taining transient natural convection results over a
wide range of RapA typically in the range: 1 <

RapA < 1010. The test chamber and the test pro-
cedure have been described fully in several theses:
(Chamberlain2; Hassani8; Clemes6; and Jafarpur10),
and some publications (Chamberlain et al.3; Hassani
and Hollands9; and Clemes et al7). The test pro-
cedure has been demonstrated to give accurate re-
sults over the full range of RapA. The uncertainty

of the convection data are reported by Jafarpur10

to be �6 % on the Nusselt number and �4 % on
the Rayleigh number. The data will be compared
against the proposed models in the following section.

Comparison of Models and Data

For the three elliptic disks used in the tests the
di�usive limit was calculated to have the values:
3:342; 3:364;3:377 respectively. The smallest and
largest values di�er by less than 1 %.

The component and composite body-gravity
functions for the top, bottom and side surfaces ac-
cording to the comprehensive model are reported in
Table 3.

Since the ellipse aspect ratio was held nearly con-
stant, the component values for the top and bottom
surfaces are almost constant. Even though the ellip-
tic disk aspect ratio varies from about 8:2% to

Table 3: Values of Body-Gravity Functions of
Elliptic Disks

cylinder Gtop Gbot Gside GpA
ec1 1:152 :5760 1:585 :8612

ec2 1:152 :5759 1:505 :8810

ec3 1:152 :5762 1:454 :8968

about 16%, the component value for the side sur-
face varies by about 9%. The composite value of the
body-gravity function GpA varies by only 4:1%. The
smallest value corresponds to the thinnest disk and
the largest value corresponds to the thickest disk.

The product of the Prandtl number function
which has the value F (0:71) = 0:513 for air cooling
and the body-gravity function GpA has the values:
0:442; 0:452; 0:460 for the three test elliptic disks ac-
cording to the comprehensive method, and the val-
ues are: 0:440; 0:451;0:459 when the approximations
for Gtop and Gbot are employed. The di�erences are
clearly negligible for these elliptic disks.

The comparison of the air data and the proposed
comprehensive model for the three elliptic disks is
shown in Fig. 1. The agreement is seen to be ex-
cellent over the full range of RapA. The root-
mean-square percent di�erences were found to be:
3:85%; 3:81%;3:74% respectively for the three test
disks.

The approximate simple model gives the values
of F (Pr)GpA = 0:427; 0:438;0:447 respectively for
the test disks. These values are in close agreement
with the values obtained from the comprehensive
model and are compared to the experimental re-
sults in Fig. 2. For the approximate model the root-
mean-square percent di�erences were found to be:
2:84%; 4:92%;4:79% respectively for the three test
elliptic disks.

We observe that the comprehensive model gives
consistent RMS percent di�erences close to 3:8%
while the approximate model gives a smaller RMS
percent di�erence for the thinnest disk and larger
RMS percent di�erences for the two thicker disks.

Summary and Discussion

A procedure was presented for the development
of a general model for predicting natural convec-
tion from isothermal, horizontal, thin elliptic disks
over several decades of the Rayleigh number. The
proposed model consists of the linear superposition
of the di�usive limit (shape factor) applicable for
negligible uid motion and the laminar boundary
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Figure 1: Comparison of Comprehensive Model and Air Data for

Three Elliptic Disks
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Model and Air Data for Three Elliptic Disks
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layer asymptote. Simple correlation equations were
developed for elliptic disks. These simple correla-
tion equations are close approximations of the gen-
eral, more complex model. The correlation equa-
tions were compared against air data obtained over
several decades of the Rayleigh number. The root-
mean-squared percent di�erence between the data
and the proposed correlation equations was less than
3:9% for the three elliptic disks. The shape factors
di�ered by less than 1:1% and the body-gravity func-
tion di�ered by less than 4:1%. The proposed sim-
ple model based on the inscribed-circumscribed cir-
cular cylinder model to estimate the di�usive limit
and the body-gravity function gave correlation equa-
tions which are in acceptable agreement with the
data. The root-mean-square percent di�erences lie
in the range: 2:84% to 4:92%. Simple relationships
are also presented for the accurate computation of
the complete elliptic integral of the second kind and
its complement which appear in the comprehensive
model.
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