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Analytical Modeling of Spreading Resistance in
Flux Tubes, Half Spaces, and Compound Disks

M. Michael Yovanovich, J. Richard Culham, and Pete Teertstra

Abstract—A review of previously published models and solu- - b
tions pertinent to the issue of modeling thermal resistances of ar-
diamond on copper heat sink systems is presented. The many
particular solutions are shown to be special cases of the com-
prehensive model developed for a circular heat source in perfect
thermal contact with the top surface of a compound disk which
consists of two isotropic layers in perfect thermal contact. The
bottom surface of the compound disk is subjected to a convective
or contact cooling condition. Whenever possible simple models

and correlation equations are presented for ease of computa- @ Schematcof General Case b) Limiting Case t »0
tion. Bounds are presented for estimating the overall thermal
resistance of several important cases. i ;1 b -
Index Terms—Compound disks, flux tubes, half space, spread- ~al- ‘HJH
ing and constriction resistance. ‘H 1)
NOMENCLATURE \ ! ‘
a Source radius (m). e
A, Contact aregm?). B :
At FIUX tUbe arede).- c) Limiting Caseb > co d) Limiting Casetzb
bBi E';at'tnie;%ae(:g ;Zc/j}fus (m). Fig. 1. Typical spreading resistance problems.
1 = 1-
E() Complete elliptic integral.
h Convective coefficient (W/AK). @n Subfunction (17).
Jo(+),J1(-) Bessel functions. P Dimensionless spreading resistance.
k Thermal conductivity (W/mK).
q Heat flux (W/nt). Subscripts
Q ?ﬁat ﬂOIW rate (W)e;’ W 1,2  First and second layers.
f . erm;_ri&stanéz )(: )- c Constriction or spreading.
ayer thickness (m).
O
T Temperatur_e ©). Superscripts
T,z Polar coordinates. )
q Isoflux solution.
Greek Symbols T Isothermal solution.
bn Eigenvalues. I. INTRODUCTION
€ Relative source size= a/b. . :
. Conductivity ratio= k /2 HE recently published paper of Hui and Tan [1] was
p Heat flux distribut;)n i)ar;meter (see Fig. 2) the motivation for this review article. In their paper, an
. Dimensionless thickness #/b e elegant mathematical solution was presented for the general
én Subfunction (16) ' problem depicted in Fig. 1(a) which shows a circular heat

source of radiusa in perfect thermal contact with a heat
spreader modeled as a circular disk of radiughicknesst
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Fig. 2. General two layer compound disk problem. 'EERE b

centroid and area-average temperatures of the heat source weye
given. They presented numerical results only feyk, = 4 :
corresponding to a diamond-copper system, for several values T=0
of the relative spreader thickness: 0.2%/a < 3.0, and for
several values of the relative spreader sizes 8/a < cc.

Hui and Tan [1] did not present simplifications of theifFig. 3. General two layer compound disk and three special cases.
solutions; they did not indicate whether their solution could

be used to handle the problem depicted in Fig. 1(d); and thggntact with the substrate whose thermal conductivityds

re\gew oquthtgr per}f":ﬁ.”t puplicationf WS.S Iimtite?r.] d and with thicknesg, — oo. The thermal conductivities are
ne objective of this review 1s 1o bring 10 he Teaterz g med to be isotropic. The thermal spreading (constriction)
attention the numerous related publications that give solutio istance has been obtained for the isoflux and isothermal

to particular problems that are not handled by the results of [ undary conditions specified over the heat source area. Other

A second objective is to present simplifications, Correlatiol')~'oundary conditions have also been examined. The solutions
equations and approximations that have been presentedhg\//e been reported for

several researchers. A third objective is to present the compre- .
hensive solution developed by [2] for the system depicted in 1) congctlve layersky > k»;

Fig. 2 which shows a circular heat source of radius perfect 2) resistive layersk; < k.

contact with the top surface of a compound circular disk of Antonetti and Yovanovich [3] presented an analytical so-
radiusb and overall thicknesswhich is cooled over its entire lution for a single, conductive layer for both isothermal
bottom surface through either a uniform convective or conta@pd isoflux conditions. Board [4] has provided analytical
conductancé:. The compound disk consists of two isotropi@olutions for the effect of multiple layers on the spreading
materials of thermal conductivities:;, k-, and thicknesses: resistance. Hui and Tan [1] presented analytical solutions for
t1, 2, respectively. The free surfaces of the compound disienductive layers for the isoflux boundary condition. Kennedy
are adiabatic and the heat flux over the heat source regiorddk presented several analytical solutions for = &, for
either uniform or has the shapes shown in Fig. 2. It will bde maximum and area-average source area temperature for
shown that the general solution presented in this paper contdif isoflux boundary condition. Mal'koet al. [6] examined

the particular results presented by [1], and several importdRe effect of soft metal coatings and linings on the spreading

Bi 500, 0<k<oo dje—>0,T 50, 0<Kk<oo

results which appear in other pub“shed works. resistance. Mikic and Carnasciali [7] presentEd an apprOXimate
solution for determining the effect of thermal conductivity of
Il. GENERAL REVIEW OF FLUX plating materials on the spreading resistance. In a recent paper
TUBE AND HALE-SPACE SOLUTIONS [8] presented analytical solutions for determining the effects

of relative thicknesses and relative thermal conductivities of

The solutions pertinent to this topic have be_e_n (_)ptalned fﬂfultiple layers. They examined the isoflux and the equivalent
the heat flux tube and th.e half-space (or seml-lnflnlte SPaCfhthermal flux boundary conditions. Their solutions are valid
Since the flux tube §0Iut|ons are general, they will reduce for any combination of thermal conductivities. Negus and
the half-space SOIU“‘_)”S' ) ) L ~ Yovanovich [9] presented accurate correlation equations of

The flux tube solutions are given in terms of infinite serieg, o gimensionless spreading resistance for the isoflux and
whereas the half-space solutions are given in terms of integralg§iajent isothermal flux boundary conditions for the case

of k; = k2. In @ companion paper [10], the method of opti-

mized images was used to calculate accurately the spreading
The general review begins with the flux tube solutions. Thesistance for the isothermal boundary condition/pr= k.

flux tube consists of a circular heat source area of radiusNeguset al. [11] examined the effect of boundary conditions

which is in perfect thermal contact with a layer of radius on the thermal constriction (spreading) resistance of a single

and thicknesg,;, as shown in Fig. 3(c). The layer is in perfectonductive or resistive layer. Neges$ al. [12] demonstrated

A. Flux Tube Solutions
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for the isoflux boundary condition that the dimensionlesS. Finite Circular Disk Solutions
spreading resistance definedfas/A.R. is a weak function
of the relative size of the heat source area defineg/as /A,
where A, is the source area and; is the flux tube cross
section area. They examined three combinations:

Solutions are presented for calculating the spreading resis-
tance from a circular source of radiuswhich is in perfect
contact with a circular disk of radius. The circular disk
consists of two isotropic layers in perfect contact, the first

1) circular area on circular flux tube; layer adjacent to the source has a thickngsand a thermal
2) square area on a square flux tube; conductivity &; and the second layer has a thicknessand
3) circular area on a square flux tube. thermal conductivityk,, as shown in Fig. 3(a). The lower face

The results were obtained fég /k, = 1. Schankulat al.[13] of the disk is in contact with a thermal sink through a uniform
presented analytical and experimental results for the effectafnvective or contact conductankeThe free surfaces of the
oxide films on the constriction resistance of zirconium alloydisk are adiabatic.
for nuclear applications. Simaet al. [14] presented analytical The dimensionless constriction (spreading) resistance will
results for the analogous problem of current flow from abe a function of the boundary condition over the heat source
isopotential circular source area into a circular flux tube. Yigrea, the basis for the constriction resistance (average or
[15] reported analytical and experimental results for the effectaximum source temperature), the relative layer thicknesses:
of oxide films on thermal constriction resistance. Yovanovich /a, t2/a, the relative conductivity:; /&2, the relative size of
[16] developed a general solution for arbitrary axisymmetritie heat source = a/b and the boundary condition at the sink
flux distributions fork; = k.. By means of the generalboundaryBi = hb/k. The solution to this general problem
solution he then presented the general solution for a family dearly contains the solutions described above. Kennedy [5]
axisymmetric flux distributions of the forn€(1 — «?)" where presented the solution for the maximum temperature for the
C'is a constanty = r/a is any point in the source area, andsoflux source fok; /k; = 1 andBi = oc. In a technical note
w is a flux distribution parameter. Yovanovich presented thr§22], the analytical solution for the isoflux circular source was
solutions fory = —1/2, 0, 1/2. He also reported numericapresented. They also proposed an approximate relationship
values for the dimensionless constriction (spreading) resistarfice the ratio of the spreading resistance with a layer to the
for a range of relative source size= a/b as well as some spreading resistance without a layer. The simple relationship
correlation equations. is reported to be accurate to approximately 30%. Yovanovich
et al. [2] presented the most comprehensive solution valid for
any axisymmetric flux distribution over the source area. They
reported analytical results for three flux distributions. Saabas
Several studies have produced results for the circular heatal. [23] developed the analytical solution for the isoflux
source area of radius placed in perfect thermal contactcircular source area and the isoflux annular area placed in
with an isotropic layer of thermal conductivifyy which is in  perfect contact with a compound disk. The solution can handle
perfect thermal contact with an isotropic half-space of thermgie special case of a circular heat source and a circular heat
conductivity k, as shown in Fig. 3(d). The dimensionlessink with uniform flux over both areas. Nelson and Sayers
spreading resistance in this case depends on the relative Iq9a reported in tabular and graphical form the results of an
thicknesst; /a, the relative layer thermal conductivity /%2,  extensive numerical study for the isoflux source. In two related
and the boundary condition over the source area. papers [25], [26], analytical solutions for the isoflux circular
Beck et al. [17] presented a novel surface element methagburce were presented. They reported expressions for the area-
for calculating the maximum temperature. They developedagerage and maximum temperatures. They also proposed a
set of convenient algebraic equations for calculation of thRgmple closed form expression which they reported is accurate
maximum temperature for a diamond layer on a copper hajf within 10% of the full solution. They reported that their
space for the isoflux boundary condition. Board [18] presentgdmputed full solution results were in excellent agreement
the solution for the isoflux annular source on a single layer {gith the numerical values reported by [24].
contact with a half-space. He developed simple approximatesince the solution for the compound disk is more general
expressions for both conductive and resistive layers for tigan the flux tube and half-space solutions, it will be consid-
circular source. Dryden [19] developed an analytical solutiasted in the subsequent section. The general solution of [2]
for the equivalent isothermal boundary condition for a singlgill be examined in detail to reveal its characteristics and to

layer. He presented approximate solutions valid for thin arghow that it reduces to the particular solutions presented in
thick layers for both conductive and resistive layers. In @e papers reviewed above.

second paper Drydest al. [20] developed short and long
time solutions for the effect of a single layer which is either
conductive or resistive, and for arbitrary, axisymmetric flux
distributions. Hui and Tan [1] also developed the solution for The compound disk is shown in Fig. 2. The disk consists
an isoflux source on a single layer. Yovanovich [21] developed two isotropic materials of thickness;,t, and thermal

a surface element method for determining the constricti@onductivities:k;, k2> which are in perfect contact. The radius
(spreading) resistance of arbitrary singly or doubly-connectefithe compound disk is denotédand its thickness is denoted
heat source areas which are subjected to the isoflux boundary: ¢, + ¢». The lateral boundary: = b is adiabatic, the
condition for the case wherk, = k. face atz = ¢ is either cooled by a fluid through the film

B. Half-Space Solutions

I1l. SPREADING RESISTANCE WITHIN COMPOUND DISKS
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q a a The boundary condition along the lateral boundary b in
d | both regions is the adiabatic condition
oT; .
=0 i=1,2. 4
5 =0 i=1, (4)

The boundary conditions over the top surface= O of the
first layer are

oT; oT;
—ky 8;:1 =¢q(r),0<r<a and _kla—; =0,a<r<b
)
a a where the heat flux distribution over the heat source area

0< 7 < acan be

1) uniform whereq(r) = Q/(wa?);

2) the equivalent isothermal heat flux distributigfr) =
Q/2rav/a? — r? where@ is the total heat transfer rate
dissipated by the heat source.

The perfect contact boundary conditions along= #;,0 <
b) k=1, Bi — e de—0,x=1,1 > r < b are

Fig. 4. Special cases of the two layer compound diskkfor= k. T —T k o1y 3 Ty (6)
1 — 42, —h1

1571 "9y

conductanceh or it is in contact with a heat sink throughThe final boundary condition along the lower fage= ¢, 0
a contact conductanck. In either caseh is assumed to be < r < b is the Robin condition

uniform. The face at = 0 consists of the heat source area of T,

radiusa and the remainder of that faee< » < b is adiabatic. —k 9 h(L5(r,t) = Trer) (7)

The boundary condition over the source area can be modeled ] ]
as wherel.; is some convenient reference temperature.

1) uniform heat flux;
2) isothermal.
The complete solution for these two boundary conditions hasThe total resistance of the system is defined as
been given .by [2]. The general solution for the dimension- QRiotal = T1(0) = Tret 8)
less spreading parametgr = 4k;aR. depends on several
dimensionless parameters:=t/b, 71 = t1/b, 72 = t2/b,e = where the area-mean source temperature is defined as
a/b,k = ki /ks, Bi = hb/ko, 1. The parametef; defines the _ 1 fe
heat flux distribution over the contact area. Wher- 0, the 7:(0) = —2/ T1(r,0)277r dr. 9)
heat flux is uniform (isoflux), and whem = — 1/2, this heat Taz Jo
flux distribution is called the equivalent isothermal distribution The total thermal resistance can be written in terms of two
because it produces aimostisothermal contact area providedcomponent resistances
a/b< 0.6. The general compound disk solution given below

B. Components of Total Thermal Resistance

reduces to the several special cases shown previously in Figs. 3 Reotal = Ko + Fup (10)
and 4. where the one-dimensional (1-D) conduction resistance of the
system is
A. Mathematical Formulation ¢
1 t2 1

Rip (11)

The governing equation for the steady-state axisymmetric
temperature distributions within the layer € » < ¢; of
thermal conductivityk; and within the substraté, < z <
t = t; + to of thermal thermal conductivity:, is

= b it T

and the spreading (constriction) resistance is denotef.as
It is convenient to write the spreading resistance in its dimen-
sionless form, where the general solution for dimensionless

VT, =0, i=1,2 (1) spreading resistance is [2]
where 8 1) & 1)
82 1 8 82 1/) = MZAn(TL,G)Bn(TL,T,Tl)Jl( né)' (12)
Vie — 4> 4 . ) - n
or2  r or 922 o
The boundary condition along the axis= 0 in both regions Zhe coeff;men?ﬁln depend on the heat flux paramegefThey
is the symmetry condition: ecome fory = —1/2
OT: —2¢ sin(6,€)
P L A, =———"7 13
o =0 i=L2 @ 2T (00) )
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and forpy = 0 and fory = 0
4 — —2¢J1(6ne€) (14) ? =1.08076 — 1.41042¢ 4 0.26604¢> — 0.00016¢>
6275 (8n) +0.058 266¢7 (24)

The functionB,, is defined as

B _ ¢n tanh(6,7m1) — ¢p

where the superscriptE and ¢ denote the equivalent isother-
15 mal and isoflux solutions respectively. For small valuesttie
1— ¢y (15) thermal spreading parameter for the isoflux boundary condition

. . 5 .
and the two functions which appear in the above reIationsf’isw:ﬁg?ﬁg:]n?glﬁfuﬁ d%rslazzrntdf}zgnthe spreading parameter for

are defined as

Pn = ol cosh(6,71)[cosh(6,71) — ¢ sinh(é,7)] (16) B. Isotropic Finite Disks
& The dimensionless spreading resistance for isotrapic 1
and finite disks, < 0.72 with negligible thermal resistance at the
6, + Bitanh(6,7) (17) heat sink interfacé3i = oo, as presented in Fig. 4(b), is given
= 8, tanh(6,7) + Bi’ by the following solutions: fo, = —1/2
The eigenvalues,, are the positive roots of/;(é,) = O. 8 o= Ji(6n€)sin(S,€)
They can be computed quickly and accurately by means of Y= Te z_: 63J2(6,) tanh(6,7) (25)
the modified Stokes approximation [8] n=t
and forpy = 0
5 — B 6 n 6 4716 n 3902418 n>1 s o
S P TV I (0 ;I = _ 165~ Jiéae) s 26
(18) V= e 2 536, o) (20)
where 3, = w(4n + 1). If the external resistance is negligibl#; — o, the tempera-

The functiony,, accounts for the effects of the parameterdre at the lower face of the disk is assumed to be isothermal.

8,7, Bi. For limiting values of the parametd# it reduces to The solutions for isoflux, = 0, heat source and isothermal
base temperature were given by [5] for

¢n = tanh(é,7),  Bi— o0 (19) 1) the centroid temperature;
and 2) the area-average contact area temperature.
¢n = coth(é,7),  Bi— 0. (20) c. correlation Equations fop: = 0 and 0 < Bi < oo
For all 0 < Bi < oo and for all valuesr > 0.72, tanh(6,7) = The solution for the isoflux boundary condition with exter-
1 for all n > 1. Thereforep,, = 1 for n > 1. nal thermal resistance was recently re-examined by [25], [26].
When 7, >0.72,tanh(6,7) = 1, ¢, = 1 for all They nondimensionalized the constriction resistance based on
0 < Bi < o0, thereforeB,, = 1 forn > 1. These characteristicsthe centroid and area-average temperatures using the square
lead to the following flux tube solutions. root of the contact area as recommended by [12], and com-
pared the analytical results against the numerical results re-
IV. SPREADING RESISTANCE SOLUTIONS ported by [24] over the full range of the independent parame-
ters: Bi,¢, 7. Nelson and Sayers [24] also chose the square
A. Flux Tubes root of the contact area to report their numerical results.

) ) The analytical and numerical results were reported to be in
The general compound disk solution reduces to the flux -ojient agreement.

tube solutions, as shown in Fig. 4(c) and presented by [16]:8Onget al.[25] and Leeet al. [26] developed simple closed-

for o = -1/2 form expressions for the dimensionless constriction resistance
8 o Ji(6ne) sin(bne) based on the area-average and centroid temperatures. They
Y= e Z W (21) defined the dimensionless constriction parameteryas=
n=l1 nroATm VmkaR. and gave the following expressions for the area-
and forpy =0 average temperature:
po 10 i J2(6n€) 22) Pave = 2(1 = €)* 2, (27)
T 6375 (6n) and for the centroid temperature
The two flux tube solutions have been correlated by Negus and Do = i(l — & (28)
Yovanovich [9] over a wide range of the parametgi0 < ¢ < mes s r ¢
0.9). They reported fop, = —1/2 with
T =1 — 1.40978¢ + 0.34406¢> + 0.04305¢> + 0.02271¢” _ Bi tanh(é.7) + 6.

(23) P~ Bi+ 6. tanh(6,7) (29)
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and where the thermal conductivity paramet&ris defined as
k
fom ot (30) 1—,{—2
Ve K=—1" (35)
2
Songet al. [25] and Leeet al. [26] reported that the above 1+ by

approximations are withia=10% of the analytical results and
the numerical results of [24]. They did not, however, indicat;
where the maximum errors occur.

he range of this parameter is 1, 1]. It has the values 1, O,
corresponding to the valués /k; = oo, 1, O, respectively.
The function that appears within the square brackets accounts
for the effects of the thermal conductivity ratie /&, and the
relative thickness of the layef /a.

In a recent publication by [8] solutions were presented For ks = k1, K = 0, the solution reduces to the well-known
for the effect of multiple layers on the thermal constrictioproblem of an isothermal contact area situated on the surface of
resistance of a circular heat source which is subject to eithan isotropic half-space of thermal conductivity [21], [27]

D. Single Layer on Flux Tube

1) uniform heat flux; whose solution is
2) equivalent isothermal heat flux. 1 o0 . d 1
. . . : R.=—— J1(¢) sm(()—g =—. (36)
The solution for an isoflux circular heat source in perfect wkia Jo ¢ 4k1a

contact with a single layer of thickness and thermal con-
ductivity k£, which is placed in perfect thermal contact with a
isotropic flux tube whose thermal conductivitykg as shown 1
in Fig. 3(c) is presented next. The dimensionless spreading Re = 7koa
resistance which is defined @s= 4k,aR. is given by

r#f k1 # ko andt; /a — 0, then the solution reduces to

o Code 1
| nom0G =g @

Dryden [19] proposed two simple expressions for thin and

16 SN J2(6ne) thick layers for the general casg # k.
Y =— Z S P (31) The spreading resistance for thin layers<@/a < 0.10, is
me = 67.J5(6n)
2
1 1 ([t ky
The effects of the layer and substrate thermal conductivities R. = thpa T aka\a 1- = (38)

and the layer thickness are determined by the parameter
which consists of two terms. The first term is the spreading
(A +ka/ky) + (1 = ky/ky) exp(=26nem) (32) resistance within the substrate and the second term is a
(1 +k2/k1) = (1 = ka/k1) exp(—26,em1) correction factor that accounts for the effects of the relative
layer thickness and the thermal conductivity ratio.
The spreading resistance for thick layers<2; /a < oo, is

b=

wheree = a/b is the relative contact radius, angd = ¢1 /a is
the relative layer thickness. The parameigrare the roots of
J1(6,,) = 0 and they are computed quickly and accurately by R — 11 <g> 0 < 2 ) (39)
means of the modified Stokes approximation given above. The " dkia  2rkia\t 1+ ki /ko

parameter) is clearly equal to one whefy /k; = 1 and when where the first term is the constriction resistance within the

the producteﬁ. = 0.72. This soluthn then approaches th?ayer and the second term is the correction factor due to the
flux tube solution developed for an isotropic flux tube Whosn%lative layer thickness and the conductivity ratio

thermal conductivity isk; (Fig. 4). In the intermediate range, 0.& ¢, /a < 2, the full integral
solution must be used. It is relatively easy to obtain numerical

E. Single Layer on Half-Space values for all values ofi;/k, in this range by the use of
Dryden [19] obtained the solution for the equivalent isothekomputer Algebra Systems such as Maple [28], Mathematica
mal heat flux distribution [29]), and MATLAB [30].
@ (33) F. Isoflux Contact on Layer on Half-Space

q(r) = ora(a? — r2)1/2 . . )
Hui and Tan [1] used the separation of variables method

He used the Hankel transform to obtain the temperatug@mbined with the Hankel transform to obtain expressions for

distributions within the layer and the substrate. The areHe temperature distributions within a finite circular cylinder of

average temperatufE, of the contact area was obtained anépdiusb and thickness,; and thermal conductivity:, which

by means of the definitonk, = T./Q he obtained the is in perfect contact with an isotropic half-space of thermal

expression for the constriction resistance which is reporté@nductivity k» as shown in Fig. 3(c). They considered the
below in a modified form isoflux boundary conditiop = QQ/ra? over the circular source

area of radius which is located at the free end of the cylinder.
o L /Oo {1 + K exp(—=2¢t1/a) 1(0) Sin(C)% The boundary condition outside the contact area is adiabatic
¢ wkia Jo |1 - Kexp(—=2(t1/a) ¢? and so is the lateral boundary of the cylinder. The free surface
(34) of the half-space is assumed to be adiabatic. They also report




174 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING, AND MANUFACTURING TECHNOLOGY—PART A, VOL. 21, NO. 1, MARCH 1998

the special case where the radius of the finite thickness cylindlee second term accounts for the effect of the relative layer
becomes infinitely large relative to the contact radius. Thikickness and the relative thermal conductivity. The thermal
corresponds to an isoflux circular contact situated on an infinitenductivity parametefs is defined as

layer which is in perfect contact with a half-space as shown

in Fig. 3(d). They presented expressions for the heat source
temperature rise and the area-average heat source temperature
rise. with x = k1 /ks. The layer thickness-conductivity parameter

The temperature rise distribution within the contact area i is defined as

_l—ﬁ
14k

(45)

ga [ [k + ko tanh((t1/a)] J1({) r 1
T(r)=— Jol¢—) d¢. =
=3 /0 [/@) T+ tanh(Ch o) | ¢ o(¢) e I =5-02V200+ 1) E(V2/ (v + 1))
(40) T
- —==1, - 2mnn (46)
The area-average temperature rise of the heat source area is 2v/2y
T_qa{éé <k2>2+2 , <k2>21 with
T Y37\ Ey T\ 0.09375  0.0341797  0.00320435
ke | 3™\ ky ky L,:<1+ 2 ’ e O>- (47)

, /°° ()¢ 1) | | | |
o [L+4 k1 /kstanh(Cty /a)]C? [ The relative layer thl_ckness is, = t1/a and the relative
thickness parameter is
The spreading resistance can be obtained from the area- 5 o
average temperature expression throdtjh= T'/qra?. Since v =207 + 1 (48)
the dimensionless spreading resistance parameter is defineqh'aes special function

¥ = 4kyaR,. it takes the form () is the complete elliptic integral of
p= 201,

the second kind [31]. The following approximations of the

32 (ko 2 g ko 2 complete and complementary elliptic integrals of the second
Pl = 5 <k_1> ) <k_1> kind are provided to simplify the computational effort.
The complete elliptic integral is
/ - JE(Q) d¢
) ) (42) /2 k2 Kkt kS
o [1+ ki /ko tanh((ty /a)]C2 B(k) =1+ 5+ 5t 56 (49)
If ko = k1, the above expression reduces to the well-known o ’
value [21], [27] where the parametek; is defined as
Pd = 3_22 = 1.08076. (43) fy = Lo V1Z W 1=k (50)
3w 14++v/1-k2

Hui and Tan [1] did not provide simple algebraic expressior][il_ imati ides 6 digit h
for thin and thick layers. It is therefore necessary to evalua IS “approximation provides © digit accuracy everywhere
xcept atk = 1 where the error is approximately 0.3%.

the above infinite integral numerically. Computer Algebrg h | ¢ llintic int Li
Systems provide convenient means for obtaining accurate € complementary elliptic integral 1S

values of 7. 7 p?  pt Pt
E(V1-k)=-(1 1+— 4= 51
(VI-8)=20+k)\1+ T+ g+ 6D

G. Isoflux, Equivalent Isothermal and Isothermal Solutions ] o ] .
wherep = (1 — k)/(1 + k). This approximation provides six-

f The protl)lem oftfm?mg the thermalf_c.(zns.tnctnon' reIS'Staangit accuracy everywhere except/at= 0 where the error is
or a circular contact area on an infinite isotropic layer g pproximately 0.3%.

th|ckness_t1 anql thermal conductivity, placed in peff?‘:t For the equivalent isothermal flux boundary condition they
contact with an isotropic half-space of thermal conductiyity _

) . 2Y reported the result for.; = 4k aR.
was undertaken by [11]. The solutions were obtained with the
application of the Hankel transform method for flux specified B 8 n jon
boundary conditions and with a novel technique of linear Pei =1+ ;Z(_l) Le;
superposition for the mixed boundary condition (isothermal n=l
contact area and zero flux outside the source area). Thahere as discussed above the first term represents the dimen-

(52)

results are presented below. sionless constriction resistance of an isothermal source area
For the isoflux boundary condition they reported the resudh an isotropic half-space of thermal conductivity and
for ¥ = 4k1aR. the second term accounts for the effect of the relative layer
39 g8 & thickness and the relative thermal conductivity. The thermal
Pl = —— 4 — Z(_1)"}C"I . (44) conductivity parametekC is defined above. The relative layer
372 72 q . . i
n=1 thickness parametef.; is defined as

The first term is the dimensionless isoflux constriction resis-; [ /7 (23/5_ a1\ | 1 an—1/a-1y _
tance of an isotropic half-space of thermal conducti%ityand I”_[ L=p72(B = A7)+ 3™ (F7) 27”1} (53)
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with 7 = t/a and

B=nm+/n?rE+1

(54)
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VI.

A review of the papers that present solutions for the effect
of single layers on the thermal spreading resistance of a

CONCLUSION

For the isothermal source area [11] developed a correlatificular heat source that is subjected to various heat flux

equation for their numerical results. They reported =
4kiaR,. in the form

distributions has been presented. The review covers solutions
for compound disks, for heat flux tubes and for infinite layers
in perfect thermal contact with a half-space. It is shown that
the compound disk solution presented by [2] can be used to
calculate the spreading resistance for all cases including the
flux tube and half-space problems.

Approximations proposed by various researchers are pre-
sented for quick calculations of the spreading resistance. Upper
and lower bounds on the total thermal resistance are proposed
for the spreader-heat sink problem which can be applied to
the diamond spreader-copper heat sink system. The maximum
difference between the upper and lower bounds on the total

T = Fy tanh F» + Fy (55)
where

Fy = 0.49472 — 0.49236% — 0.00340x> (56)

and

Fy =0.28479 + 1.33377 + 0.068647%  with

7 = logg 1 (57)

and
Fs = 0.49300 + 0.57312x — 0.06628x> (58)

wherex = k; /ko. The correlation equation was developed for[1]
resistive layers: 0.0¥ « < 1 over a wide range of the relative
thickness: 0.01< 7 < 100. The maximum relative error [2]
associated with the correlation equation is approximately 2.6%
atr; = 0.01 ands = 0.2. Numerical results fap?, +.;, 1* for

a range of values of; andx were presented in tabular form [3]
for comparison. They found that the values &t > ).; and
that+.; < 7. The maximum difference betweef? andy”
was approximately 8%. They found that > «.; for very thin
layers:i; < 0.1 and forx < 0.1; however, the differences were
less than 8%. For most applications the equivalent isotherm([;]]
flux results and the true isothermal results are similar. 6]

(4]

V. BOUNDS ON TOTAL THERMAL RESISTANCE [7]

Upper and lower bounds on the total resistance of the
general case shown in Fig. 1(a) will be proposed based on tid
results presented above. The actual resistance will lie between
the upper and lower bounds which will be close in most

applications. [9]
The upper bound can be determined from
t P(p=0)  1.0808
= 59) [10]
Rupper bound klﬁbQ + 4]61@ 4]€2b ( )
and the lower bound by [11]
t Pp=-1/2) 1
ower bound — . 60
Riower bound = 7773 Toa T agy OO .

In the above two expressions the spreading paraméiey is
determined by means of (12) with (13)—(16). For the probleims)
shown in Fig. 1(a) = 1, thereforep,, = 0, andB,, = —¢,,.

The relationship given by (17) is replaced by (20) for the
upper bound, and by (19) for the lower bound. The largegly;
uncertainty in the estimate of the spreading resistance will
occur whent¢/b — 0. In this limit, the second term in the [15]
above two relationships becomes negligible. Whgrn> 0.72

as shown in Fig. 1(d)¢,, = 1 for all n > 1. The difference
between the upper and lower bounds will be less than 8ff,
which occurs whert/b = 0.

resistance will be less than 8% for most applications.
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