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Analytical Modeling of Spreading Resistance in
Flux Tubes, Half Spaces, and Compound Disks

M. Michael Yovanovich, J. Richard Culham, and Pete Teertstra

Abstract—A review of previously published models and solu-
tions pertinent to the issue of modeling thermal resistances of
diamond on copper heat sink systems is presented. The many
particular solutions are shown to be special cases of the com-
prehensive model developed for a circular heat source in perfect
thermal contact with the top surface of a compound disk which
consists of two isotropic layers in perfect thermal contact. The
bottom surface of the compound disk is subjected to a convective
or contact cooling condition. Whenever possible simple models
and correlation equations are presented for ease of computa-
tion. Bounds are presented for estimating the overall thermal
resistance of several important cases.

Index Terms—Compound disks, flux tubes, half space, spread-
ing and constriction resistance.

NOMENCLATURE

Source radius (m).
Contact area m .
Flux tube area m .
Heat spreader radius (m).
Biot number .
Complete elliptic integral.
Convective coefficient (W/m .
Bessel functions.
Thermal conductivity (W/mK).
Heat flux (W/m .
Heat flow rate (W).
Thermal resistance (C/W).
Layer thickness (m).
Temperature (C).
Polar coordinates.

Greek Symbols

Eigenvalues.
Relative source size .
Conductivity ratio .
Heat flux distribution parameter (see Fig. 2).
Dimensionless thickness .

n Subfunction (16).
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Fig. 1. Typical spreading resistance problems.

n Subfunction (17).
Dimensionless spreading resistance.

Subscripts

1, 2 First and second layers.
Constriction or spreading.

Superscripts

Isoflux solution.
Isothermal solution.

I. INTRODUCTION

T HE recently published paper of Hui and Tan [1] was
the motivation for this review article. In their paper, an

elegant mathematical solution was presented for the general
problem depicted in Fig. 1(a) which shows a circular heat
source of radius in perfect thermal contact with a heat
spreader modeled as a circular disk of radiusthickness
and thermal conductivity which is in perfect thermal contact
with a half-space of thermal conductivity They assumed a
uniform heat flux distribution over the heat source area, and
all other free boundaries were taken to be adiabatic. They
also considered the special cases shown in Fig. 1(b) and (c),
where the radius of the spreader and they presented
the second solution as a semi-infinite integral. Solutions for the
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Fig. 2. General two layer compound disk problem.

centroid and area-average temperatures of the heat source were
given. They presented numerical results only for 4
corresponding to a diamond-copper system, for several values
of the relative spreader thickness: 0.25 3.0, and for
several values of the relative spreader size: 3

Hui and Tan [1] did not present simplifications of their
solutions; they did not indicate whether their solution could
be used to handle the problem depicted in Fig. 1(d); and their
review of other pertinent publications was limited.

One objective of this review is to bring to the readers
attention the numerous related publications that give solutions
to particular problems that are not handled by the results of [1].
A second objective is to present simplifications, correlation
equations and approximations that have been presented by
several researchers. A third objective is to present the compre-
hensive solution developed by [2] for the system depicted in
Fig. 2 which shows a circular heat source of radiusin perfect
contact with the top surface of a compound circular disk of
radius and overall thicknesswhich is cooled over its entire
bottom surface through either a uniform convective or contact
conductance The compound disk consists of two isotropic
materials of thermal conductivities: and thicknesses:

respectively. The free surfaces of the compound disk
are adiabatic and the heat flux over the heat source region is
either uniform or has the shapes shown in Fig. 2. It will be
shown that the general solution presented in this paper contains
the particular results presented by [1], and several important
results which appear in other published works.

II. GENERAL REVIEW OF FLUX

TUBE AND HALF-SPACE SOLUTIONS

The solutions pertinent to this topic have been obtained for
the heat flux tube and the half-space (or semi-infinite space).
Since the flux tube solutions are general, they will reduce to
the half-space solutions.

The flux tube solutions are given in terms of infinite series,
whereas the half-space solutions are given in terms of integrals.

A. Flux Tube Solutions

The general review begins with the flux tube solutions. The
flux tube consists of a circular heat source area of radius
which is in perfect thermal contact with a layer of radius
and thickness as shown in Fig. 3(c). The layer is in perfect

Fig. 3. General two layer compound disk and three special cases.

contact with the substrate whose thermal conductivity is
and with thickness The thermal conductivities are
assumed to be isotropic. The thermal spreading (constriction)
resistance has been obtained for the isoflux and isothermal
boundary conditions specified over the heat source area. Other
boundary conditions have also been examined. The solutions
have been reported for

1) conductive layers, ;
2) resistive layers,

Antonetti and Yovanovich [3] presented an analytical so-
lution for a single, conductive layer for both isothermal
and isoflux conditions. Board [4] has provided analytical
solutions for the effect of multiple layers on the spreading
resistance. Hui and Tan [1] presented analytical solutions for
conductive layers for the isoflux boundary condition. Kennedy
[5] presented several analytical solutions for for
the maximum and area-average source area temperature for
the isoflux boundary condition. Mal’kovet al. [6] examined
the effect of soft metal coatings and linings on the spreading
resistance. Mikic and Carnasciali [7] presented an approximate
solution for determining the effect of thermal conductivity of
plating materials on the spreading resistance. In a recent paper
[8] presented analytical solutions for determining the effects
of relative thicknesses and relative thermal conductivities of
multiple layers. They examined the isoflux and the equivalent
isothermal flux boundary conditions. Their solutions are valid
for any combination of thermal conductivities. Negus and
Yovanovich [9] presented accurate correlation equations of
the dimensionless spreading resistance for the isoflux and
equivalent isothermal flux boundary conditions for the case
of In a companion paper [10], the method of opti-
mized images was used to calculate accurately the spreading
resistance for the isothermal boundary condition for
Neguset al. [11] examined the effect of boundary conditions
on the thermal constriction (spreading) resistance of a single
conductive or resistive layer. Neguset al. [12] demonstrated
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for the isoflux boundary condition that the dimensionless
spreading resistance defined as is a weak function
of the relative size of the heat source area defined as
where is the source area and is the flux tube cross
section area. They examined three combinations:

1) circular area on circular flux tube;
2) square area on a square flux tube;
3) circular area on a square flux tube.

The results were obtained for 1. Schankulaet al. [13]
presented analytical and experimental results for the effect of
oxide films on the constriction resistance of zirconium alloys
for nuclear applications. Simonet al. [14] presented analytical
results for the analogous problem of current flow from an
isopotential circular source area into a circular flux tube. Yip
[15] reported analytical and experimental results for the effect
of oxide films on thermal constriction resistance. Yovanovich
[16] developed a general solution for arbitrary axisymmetric
flux distributions for By means of the general
solution he then presented the general solution for a family of
axisymmetric flux distributions of the form: where

is a constant, is any point in the source area, and
is a flux distribution parameter. Yovanovich presented three

solutions for 1/2, 0, 1/2. He also reported numerical
values for the dimensionless constriction (spreading) resistance
for a range of relative source size as well as some
correlation equations.

B. Half-Space Solutions

Several studies have produced results for the circular heat
source area of radius placed in perfect thermal contact
with an isotropic layer of thermal conductivity which is in
perfect thermal contact with an isotropic half-space of thermal
conductivity as shown in Fig. 3(d). The dimensionless
spreading resistance in this case depends on the relative layer
thickness , the relative layer thermal conductivity ,
and the boundary condition over the source area.

Beck et al. [17] presented a novel surface element method
for calculating the maximum temperature. They developed a
set of convenient algebraic equations for calculation of the
maximum temperature for a diamond layer on a copper half-
space for the isoflux boundary condition. Board [18] presented
the solution for the isoflux annular source on a single layer in
contact with a half-space. He developed simple approximate
expressions for both conductive and resistive layers for the
circular source. Dryden [19] developed an analytical solution
for the equivalent isothermal boundary condition for a single
layer. He presented approximate solutions valid for thin and
thick layers for both conductive and resistive layers. In a
second paper Drydenet al. [20] developed short and long
time solutions for the effect of a single layer which is either
conductive or resistive, and for arbitrary, axisymmetric flux
distributions. Hui and Tan [1] also developed the solution for
an isoflux source on a single layer. Yovanovich [21] developed
a surface element method for determining the constriction
(spreading) resistance of arbitrary singly or doubly-connected
heat source areas which are subjected to the isoflux boundary
condition for the case where

C. Finite Circular Disk Solutions

Solutions are presented for calculating the spreading resis-
tance from a circular source of radiuswhich is in perfect
contact with a circular disk of radius The circular disk
consists of two isotropic layers in perfect contact, the first
layer adjacent to the source has a thicknessand a thermal
conductivity and the second layer has a thicknessand
thermal conductivity as shown in Fig. 3(a). The lower face
of the disk is in contact with a thermal sink through a uniform
convective or contact conductanceThe free surfaces of the
disk are adiabatic.

The dimensionless constriction (spreading) resistance will
be a function of the boundary condition over the heat source
area, the basis for the constriction resistance (average or
maximum source temperature), the relative layer thicknesses:

the relative conductivity the relative size of
the heat source and the boundary condition at the sink
boundary The solution to this general problem
clearly contains the solutions described above. Kennedy [5]
presented the solution for the maximum temperature for the
isoflux source for 1 and In a technical note
[22], the analytical solution for the isoflux circular source was
presented. They also proposed an approximate relationship
for the ratio of the spreading resistance with a layer to the
spreading resistance without a layer. The simple relationship
is reported to be accurate to approximately 30%. Yovanovich
et al. [2] presented the most comprehensive solution valid for
any axisymmetric flux distribution over the source area. They
reported analytical results for three flux distributions. Saabas
et al. [23] developed the analytical solution for the isoflux
circular source area and the isoflux annular area placed in
perfect contact with a compound disk. The solution can handle
the special case of a circular heat source and a circular heat
sink with uniform flux over both areas. Nelson and Sayers
[24] reported in tabular and graphical form the results of an
extensive numerical study for the isoflux source. In two related
papers [25], [26], analytical solutions for the isoflux circular
source were presented. They reported expressions for the area-
average and maximum temperatures. They also proposed a
simple closed form expression which they reported is accurate
to within 10% of the full solution. They reported that their
computed full solution results were in excellent agreement
with the numerical values reported by [24].

Since the solution for the compound disk is more general
than the flux tube and half-space solutions, it will be consid-
ered in the subsequent section. The general solution of [2]
will be examined in detail to reveal its characteristics and to
show that it reduces to the particular solutions presented in
the papers reviewed above.

III. SPREADING RESISTANCE WITHIN COMPOUND DISKS

The compound disk is shown in Fig. 2. The disk consists
of two isotropic materials of thickness: and thermal
conductivities: which are in perfect contact. The radius
of the compound disk is denotedand its thickness is denoted

The lateral boundary is adiabatic, the
face at is either cooled by a fluid through the film
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Fig. 4. Special cases of the two layer compound disk fork2 = k1:

conductance or it is in contact with a heat sink through
a contact conductance In either case is assumed to be
uniform. The face at 0 consists of the heat source area of
radius and the remainder of that face is adiabatic.
The boundary condition over the source area can be modeled
as

1) uniform heat flux;
2) isothermal.

The complete solution for these two boundary conditions has
been given by [2]. The general solution for the dimension-
less spreading parameter depends on several
dimensionless parameters:

The parameter defines the
heat flux distribution over the contact area. When 0, the
heat flux is uniform (isoflux), and when 1/2, this heat
flux distribution is called the equivalent isothermal distribution
because it produces analmostisothermal contact area provided

0.6. The general compound disk solution given below
reduces to the several special cases shown previously in Figs. 3
and 4.

A. Mathematical Formulation

The governing equation for the steady-state axisymmetric
temperature distributions within the layer 0 of
thermal conductivity and within the substrate

of thermal thermal conductivity is

(1)

where

(2)

The boundary condition along the axis 0 in both regions
is the symmetry condition:

(3)

The boundary condition along the lateral boundary in
both regions is the adiabatic condition

(4)

The boundary conditions over the top surface 0 of the
first layer are

and

(5)

where the heat flux distribution over the heat source area
0 can be

1) uniform where ;
2) the equivalent isothermal heat flux distribution

where is the total heat transfer rate
dissipated by the heat source.

The perfect contact boundary conditions along
are

(6)

The final boundary condition along the lower face 0
is the Robin condition

(7)

where is some convenient reference temperature.

B. Components of Total Thermal Resistance

The total resistance of the system is defined as

(8)

where the area-mean source temperature is defined as

(9)

The total thermal resistance can be written in terms of two
component resistances

(10)

where the one-dimensional (1-D) conduction resistance of the
system is

(11)

and the spreading (constriction) resistance is denoted as
It is convenient to write the spreading resistance in its dimen-
sionless form, where the general solution for dimensionless
spreading resistance is [2]

(12)

The coefficients depend on the heat flux parameterThey
become for

(13)
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and for 0

(14)

The function is defined as

(15)

and the two functions which appear in the above relationship
are defined as

(16)

and

(17)

The eigenvalues are the positive roots of 0.
They can be computed quickly and accurately by means of
the modified Stokes approximation [8]

(18)

where
The function accounts for the effects of the parameters:

For limiting values of the parameter it reduces to

(19)

and

(20)

For all and for all values
1 for all 1. Therefore 1 for 1.

When 1, 1 for all
therefore 1 for 1. These characteristics

lead to the following flux tube solutions.

IV. SPREADING RESISTANCE SOLUTIONS

A. Flux Tubes

The general compound disk solution reduces to the flux
tube solutions, as shown in Fig. 4(c) and presented by [16]:
for 1/2

(21)

and for 0

(22)

The two flux tube solutions have been correlated by Negus and
Yovanovich [9] over a wide range of the parameter
0.9). They reported for 1/2

(23)

and for 0

(24)

where the superscripts and denote the equivalent isother-
mal and isoflux solutions respectively. For small values ofthe
thermal spreading parameter for the isoflux boundary condition
is approximately 8% greater than the spreading parameter for
the isothermal boundary condition.

B. Isotropic Finite Disks

The dimensionless spreading resistance for isotropic1
finite disks with negligible thermal resistance at the
heat sink interface as presented in Fig. 4(b), is given
by the following solutions: for 1/2

(25)

and for 0

(26)

If the external resistance is negligible the tempera-
ture at the lower face of the disk is assumed to be isothermal.
The solutions for isoflux, 0, heat source and isothermal
base temperature were given by [5] for

1) the centroid temperature;
2) the area-average contact area temperature.

C. Correlation Equations for and

The solution for the isoflux boundary condition with exter-
nal thermal resistance was recently re-examined by [25], [26].
They nondimensionalized the constriction resistance based on
the centroid and area-average temperatures using the square
root of the contact area as recommended by [12], and com-
pared the analytical results against the numerical results re-
ported by [24] over the full range of the independent parame-
ters: Nelson and Sayers [24] also chose the square
root of the contact area to report their numerical results.
The analytical and numerical results were reported to be in
excellent agreement.

Songet al. [25] and Leeet al. [26] developed simple closed-
form expressions for the dimensionless constriction resistance
based on the area-average and centroid temperatures. They
defined the dimensionless constriction parameter as

and gave the following expressions for the area-
average temperature:

(27)

and for the centroid temperature

(28)

with

(29)
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and

(30)

Song et al. [25] and Leeet al. [26] reported that the above
approximations are within 10% of the analytical results and
the numerical results of [24]. They did not, however, indicate
where the maximum errors occur.

D. Single Layer on Flux Tube

In a recent publication by [8] solutions were presented
for the effect of multiple layers on the thermal constriction
resistance of a circular heat source which is subject to either

1) uniform heat flux;
2) equivalent isothermal heat flux.

The solution for an isoflux circular heat source in perfect
contact with a single layer of thickness and thermal con-
ductivity which is placed in perfect thermal contact with an
isotropic flux tube whose thermal conductivity is as shown
in Fig. 3(c) is presented next. The dimensionless spreading
resistance which is defined as is given by

(31)

The effects of the layer and substrate thermal conductivities
and the layer thickness are determined by the parameter

(32)

where is the relative contact radius, and is
the relative layer thickness. The parameterare the roots of

0 and they are computed quickly and accurately by
means of the modified Stokes approximation given above. The
parameter is clearly equal to one when 1 and when
the product 0.72. This solution then approaches the
flux tube solution developed for an isotropic flux tube whose
thermal conductivity is (Fig. 4).

E. Single Layer on Half-Space

Dryden [19] obtained the solution for the equivalent isother-
mal heat flux distribution

(33)

He used the Hankel transform to obtain the temperature
distributions within the layer and the substrate. The area-
average temperature of the contact area was obtained and
by means of the definition he obtained the
expression for the constriction resistance which is reported
below in a modified form

(34)

where the thermal conductivity parameteris defined as

(35)

The range of this parameter is [1, 1]. It has the values 1, 0,
1 corresponding to the values 1, 0, respectively.
The function that appears within the square brackets accounts
for the effects of the thermal conductivity ratio and the
relative thickness of the layer

For 0, the solution reduces to the well-known
problem of an isothermal contact area situated on the surface of
an isotropic half-space of thermal conductivity [21], [27]
whose solution is

(36)

If and 0, then the solution reduces to

(37)

Dryden [19] proposed two simple expressions for thin and
thick layers for the general case

The spreading resistance for thin layers, 0 0.10, is

(38)

which consists of two terms. The first term is the spreading
resistance within the substrate and the second term is a
correction factor that accounts for the effects of the relative
layer thickness and the thermal conductivity ratio.

The spreading resistance for thick layers, 2 is

(39)

where the first term is the constriction resistance within the
layer and the second term is the correction factor due to the
relative layer thickness and the conductivity ratio.

In the intermediate range, 0.1 2, the full integral
solution must be used. It is relatively easy to obtain numerical
values for all values of in this range by the use of
Computer Algebra Systems such as Maple [28], Mathematica
[29]), and MATLAB [30].

F. Isoflux Contact on Layer on Half-Space

Hui and Tan [1] used the separation of variables method
combined with the Hankel transform to obtain expressions for
the temperature distributions within a finite circular cylinder of
radius and thickness and thermal conductivity which
is in perfect contact with an isotropic half-space of thermal
conductivity as shown in Fig. 3(c). They considered the
isoflux boundary condition over the circular source
area of radius which is located at the free end of the cylinder.
The boundary condition outside the contact area is adiabatic
and so is the lateral boundary of the cylinder. The free surface
of the half-space is assumed to be adiabatic. They also report
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the special case where the radius of the finite thickness cylinder
becomes infinitely large relative to the contact radius. This
corresponds to an isoflux circular contact situated on an infinite
layer which is in perfect contact with a half-space as shown
in Fig. 3(d). They presented expressions for the heat source
temperature rise and the area-average heat source temperature
rise.

The temperature rise distribution within the contact area is

(40)

The area-average temperature rise of the heat source area is

(41)

The spreading resistance can be obtained from the area-
average temperature expression through Since
the dimensionless spreading resistance parameter is defined as

it takes the form

(42)

If the above expression reduces to the well-known
value [21], [27]

(43)

Hui and Tan [1] did not provide simple algebraic expressions
for thin and thick layers. It is therefore necessary to evaluate
the above infinite integral numerically. Computer Algebra
Systems provide convenient means for obtaining accurate
values of

G. Isoflux, Equivalent Isothermal and Isothermal Solutions

The problem of finding the thermal constriction resistance
for a circular contact area on an infinite isotropic layer of
thickness and thermal conductivity placed in perfect
contact with an isotropic half-space of thermal conductivity
was undertaken by [11]. The solutions were obtained with the
application of the Hankel transform method for flux specified
boundary conditions and with a novel technique of linear
superposition for the mixed boundary condition (isothermal
contact area and zero flux outside the source area). Their
results are presented below.

For the isoflux boundary condition they reported the result
for

(44)

The first term is the dimensionless isoflux constriction resis-
tance of an isotropic half-space of thermal conductivityand

the second term accounts for the effect of the relative layer
thickness and the relative thermal conductivity. The thermal
conductivity parameter is defined as

(45)

with The layer thickness-conductivity parameter
is defined as

(46)

with

(47)

The relative layer thickness is and the relative
thickness parameter is

(48)

The special function is the complete elliptic integral of
the second kind [31]. The following approximations of the
complete and complementary elliptic integrals of the second
kind are provided to simplify the computational effort.

The complete elliptic integral is

(49)

where the parameter is defined as

(50)

This approximation provides 6 digit accuracy everywhere
except at 1 where the error is approximately 0.3%.

The complementary elliptic integral is

(51)

where This approximation provides six-
digit accuracy everywhere except at 0 where the error is
approximately 0.3%.

For the equivalent isothermal flux boundary condition they
reported the result for

(52)

where as discussed above the first term represents the dimen-
sionless constriction resistance of an isothermal source area
on an isotropic half-space of thermal conductivity and
the second term accounts for the effect of the relative layer
thickness and the relative thermal conductivity. The thermal
conductivity parameter is defined above. The relative layer
thickness parameter is defined as

(53)
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with and

(54)

For the isothermal source area [11] developed a correlation
equation for their numerical results. They reported

in the form

(55)

where

(56)

and

with

(57)

and

(58)

where The correlation equation was developed for
resistive layers: 0.01 1 over a wide range of the relative
thickness: 0.01 100. The maximum relative error
associated with the correlation equation is approximately 2.6%
at 0.01 and 0.2. Numerical results for for
a range of values of and were presented in tabular form
for comparison. They found that the values for and
that The maximum difference between and
was approximately 8%. They found that for very thin
layers: 0.1 and for 0.1; however, the differences were
less than 8%. For most applications the equivalent isothermal
flux results and the true isothermal results are similar.

V. BOUNDS ON TOTAL THERMAL RESISTANCE

Upper and lower bounds on the total resistance of the
general case shown in Fig. 1(a) will be proposed based on the
results presented above. The actual resistance will lie between
the upper and lower bounds which will be close in most
applications.

The upper bound can be determined from

(59)

and the lower bound by

(60)

In the above two expressions the spreading parameter is
determined by means of (12) with (13)–(16). For the problem
shown in Fig. 1(a) 1, therefore 0, and
The relationship given by (17) is replaced by (20) for the
upper bound, and by (19) for the lower bound. The largest
uncertainty in the estimate of the spreading resistance will
occur when 0. In this limit, the second term in the
above two relationships becomes negligible. When 0.72
as shown in Fig. 1(d), 1 for all 1. The difference
between the upper and lower bounds will be less than 8%
which occurs when 0.

VI. CONCLUSION

A review of the papers that present solutions for the effect
of single layers on the thermal spreading resistance of a
circular heat source that is subjected to various heat flux
distributions has been presented. The review covers solutions
for compound disks, for heat flux tubes and for infinite layers
in perfect thermal contact with a half-space. It is shown that
the compound disk solution presented by [2] can be used to
calculate the spreading resistance for all cases including the
flux tube and half-space problems.

Approximations proposed by various researchers are pre-
sented for quick calculations of the spreading resistance. Upper
and lower bounds on the total thermal resistance are proposed
for the spreader-heat sink problem which can be applied to
the diamond spreader-copper heat sink system. The maximum
difference between the upper and lower bounds on the total
resistance will be less than 8% for most applications.
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