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The general expression for the spreading resistance of an isoflux, rectangular source on a
two-layer rectangular flux channel with convective or conductive cooling at one boundary was
presented. The general expression depends on several dimensionless geometric and thermal
parameters. Expressions are given for some two- and three-dimensional spreading resistances
for two-layer and isotropic finite and semi-infinite systems. The effect of heat flux distribu-
tion over strip sources on two-dimensional spreading resistances was discussed. Tabulated
values are presented for three flux distributions, the true isothermal strip and a related non-
isoflux, non-isothermal problem. For narrow strips, the effect of the flux distribution becomes
relatively small. The dimensionless spreading resistance for an isoflux square source on an
isotropic square flux tube was discussed and a correlation equation was reported. The closed-
form expression for the dimensionless spreading resistance for an isoflux rectangular source
on an isotropic half-space was given.
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NOMENCLATURE

half-lengths of source area; m
channel conduction area; m?
heat source area; m?

characteristic length of contact area; m

Biot number; hL/k;

half-lengths of flux channel; m
contact conductance or

film coefficient; W/m? - K

index denoting layer 1 and layer 2
Bessel function of first kind, order v
thermal conductivities; W/m-K
indices for summations

heat flow rate; W

heat flux; W/m?

thermal resistance; K/W
one-dimensional resistance; K/W
spreading resistance; K/W

total resistance; K/W

total and layer thicknesses; m
layer temperatures; K

mean source temperature; K
mean sink temperature; K

relative local position in strip; u = z/c

Cartesian coordinates; m
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Greek Symbols

a = conductivity parameter;
a=(1-x8)/1+k)

B = eigenvalues; V62 + A2

r = Gamma function

é = eigenvalues; (mn/c)

€, €1, = relative contact size; €1 = a/c,e2 = b/d

K = relative conductivity; k2/ki

A = eigenvalues; (nw/d)

u = heat flux shape parameter;
pw=-1/2,0,1/2

bm,n = three-dimensional spreading function

Om,Pn = two-dimensional spreading functions

P = dimensionless spreading resistance; Rsk; L

0 = aspect ratio of rectangular source area;
e=afb>1

T,71,72 = relative layer thickness; 7 = ¢/LC,

n=t/l,m=t/L
INTRODUCTION

Thermal spreading resistance occurs whenever heat
leaves a heat source of finite dimensions and enters into
a larger region as shown in Fig. 1. This shows a planar
rectangular heat source situated on one end of a compound
heat flux channel which consists of two layers having thick-
nesses ty,ts and thermal conductivities k;, k; respectively.
The heat flux channel is cooled along the bottom surface
through a uniform film coefficient or a uniform contact con-
ductance h. The heat source area can be rectangular hav-
ing dimensions 2a by 2b or it may be a strip of width 2a
or 2b as shown in Fig. 2. The dimensions of the heat



flux channel are 2c by 2d as shown in Fig. 1. The lateral
boundaries of the heat flux channel are adiabatic.

The heat flow rate through the heat flux channel Q is
related to the mean temperature of the heat source Tyource
and the mean heat sink temperature T, and the total
system thermal resistance Ryqta through the relationship:

(1)

The total thermal resistance of the system is defined
by the relation:

QRtotal = Tsource — Lsink

Rtotal = Rs + Rip (2)

where R is the thermal spreading resistance of the system
and Rip is the one-dimensional thermal resistance defined
o o ot 1
1 2
T )
The conduction area in the previous equation is A =
4cd. For an isoflux source area, the heat flow rate through
the system is Q = ¢A; where q is the uniform heat flux and
As = 4ab is the heat source area.
For the general case of a rectangular source area on
a rectangular heat flux channel as shown in Fig. 1, the

spreading resistance will depend on several geometric and
thermal parameters such as

RS:f(a1bvcid7t1,t27klak27h) (4)

One objective of this work is to obtain a general so-
lution for this problem. A second objective is to report
several two- and three-dimensional cases which arise from
the general solution. A third objective is to report tab-
ulated values for the strip source on a semi-infinite flux
channel, and any available correlation equations.

Several investigators' % have examined spreading re-
sistance in isotropic two- and three-dimensional systems.
Sadhal® obtained the solution for an elliptical source on a
rectangular flux channel.

PROBLEM STATEMENT

The temperature distributions T} and T» within the
two layers must satisfy the Laplace equation:

ViT; =0, i=1,2 (5)

where for the rectangular heat source/rectangular flux
channel system the three-dimensional Laplacian operator

® » e o
= — —_—— =
oz? + Oy? 022
Along the common interface z = t; the two tempera-
tures must satisfy the perfect contact conditions:
oTy 0T,
T nd ky— = ky— 6
2 & 19z 2 0z ©)
Along the lateral boundaries * = #+c and y = +d the
two temperatures must satisfy the adiabatic conditions:

v?

T1=

9T _,

£ and

(7

Along the bottom surface z = ¢, +£5, the Robin bound-
ary condition must be satisfied:

oT, h
Pk (T2 — Tyink)

(8)

The parameter h can represent a uniform film coef-
ficient or a uniform contact conductance. Over the top

surface z = 0, the boundary conditions are (i) the isoflux
condition:

oTy q

Bz—_E’ -a<z<a,

~-b<y<b (9)

over the heat source area and (ii) the adiabatic condition:

o7,
Oz

for all points which lie outside the heat source area.

=0 (10)

METHODOLOGY AND SOLUTIONS

The separation of variables method was employed to
find the solutions for T} and 7. The Computer Algebra
System, Maple V Release 4, was used to accomplish all
required algebraic manipulations to obtain the two tem-
peratures distributions. The spreading resistance was ob-

tained by means of the definition proposed by Mikic and
Rohsenow!:

QRs = Tsource — Tcontact plane

The mean temperature of the heat source area is ob-
tained from

(11)

_ 1 a b
Tsource = m/ / Ty (z,y,0) dzdy (12)
—a J—=b

and the mean temperature of the contact plane z = 0 is
obtained from

. 1 c d
Tcontact plane = m /;c [—d Ti(z,y,0) dzdy (13)

GENERAL SPREADING
RESISTANCE EXPRESSION

The methodology described above was used to obtain
the solution for the general problem defined previously.
The spreading resistance is obtained by the following gen-
eral expression which shows the explicit and implicit re-

lationships with the geometric and thermal parameters of
the system:




__ 1 =, sin(ad)?
R”"zazcdklgéi 5 ¢m()
1 — sin(b))?
+2b2cdk1 ; )3 Pn(A)
sin(ad)? sin(bA)?
a). b2 Cdkl Z Z 62 )2 ﬂ ¢m,n(.3) (14)

The general expression for the spreading resistance
consists of three terms. The single summations account for
two-dimensional spreading in the z and y directions respec-
tively, and the double summation term accounts for three-
dimensional spreading from the rectangular heat source.
Figure 3 illustrates the superposition of the two strip solu-
tions and the rectangular solution which yield the general
expression.

The eigenvalues: 8, A and F are given in Table 1. The
eigenvalues § and ), corresponding to the two strip so-
lutions, depend on the flux channel dimensions and the
indices m and n, respectively. The eigenvalues 8 for the
rectangular solution are functions of the other two eigen-
values and both indices as defined in Table 1.

Table 1
Eigenvalues for Eq. (14)

nmw
A=T
5=
C

B=VETR

The contributions of the layer thicknesses: t;,t;, the
layer conductivities: ki, k2, and the uniform conductance
h to the spreading resistance are determined by means of
the general expression:

a(k(L — Bi)e*! + (k(L — Bi)e*"1 +
a(kCL — Bi)e*h — (k(L — Bi)eCt 4

6(Q) =

(KCL + Bi)eXCh+ta) 4 o(k(L + Bi)eX(1+t2)

(€L + Bi)e2<(2t1+tz) —a(kCL + Bi)e2<(t1+t2) (15)
h
where 1-x
T 1vs

with & = ky/k; and Bi = hL/k, where £ is an arbitrary
length scale employed to define the dimensionless spreading
resistance: .
Y = Rsky L (16)
which is based on the thermal conductivity of the layer ad-
jacent to the heat source. Various system lengths may be

used and the appropriate choice depends on the system of
interest.

In all summations ¢(() is evaluated in each series using
{ =4, A, and S from Table 1.

The general expression for ¢(¢) reduces to simpler ex-
pressions for two important special cases: i) the semi-
infinite flux channel where ¢, — oo, see (Fig. 4) and ii)
the finite isotropic rectangular flux channel where & = 1,
(see Fig. 5). The respective expressions are

(e2<t1 —_ 1)/‘& + (62<t1 + 1)
(€%t + 1)k + (et — 1)

where the influence of the contact conductance has van-
ished, and

¢(Q) =

(17)

(€2t +1)¢L — (1 — X)) Bi
(€%t — 1)CL + (1 + e%¢t)Bi

¢(¢) = (18)

where the influence of x has vanished.

The dimensionless spreading resistance 1 depends on
six independent dimensionless parameters such as (a) the
relative size of the rectangular source area (¢; = a/c,e; =
b/d), (b) the layer conductivity ratio (x = ka/k1), (c) the
relative layer thicknesses (1; = t1/L, 73 = t3/L), and (d)
the Biot number, Bi = hL/k;.

The general solution also reduces to several special
cases such as those shown in Figs. 6 and 7 where ky =
k1 = k, the rectangular area has become a strip and the
thickness ¢ of the flux channel is either finite or very large
relative to the larger channel dimension. Another special
case shown in Fig. 8, is obtained when t; — oo, while
k1 # ka. These and other special cases which will be ex-
amined are summarized in Table 2

The general solution may also be used to obtain the
solution for an isoflux square area on the end of a square
semi-infinite flux tube®.

SPREADING RESISTANCE FOR SOME TWO
AND THREE DIMENSIONAL SYSTEMS

Three-Dimensional Spreading Resistances

The first three-dimensional case of interest which arises
from the general solution given above is the system which
consists of an isoflux rectangular source on an isotropic
(k2 = k1 = k) finite rectangular flux channel which is
cooled through a uniform film or contact conductance
over the lower boundary. In this case the ¢ function is
defined by Eq. (18) which is substituted into Eq. (14).
The dimensionless spreading resistance for this case de-
pends on four independent dimensionless parameters where
¥ = (e, €2, 1, Bi). With four independent parameters it
is not possible to develop correlation equations and to
display graphically the general trends of the solution. Nu-
merical values of the dimensionless spreading resistance
can, however, be obtained in a straight forward manner by
means of Computer Algebra Systems.




Rectangular Area on Semi-Infinite
Rectangular Flux Channel

When the relative thickness 7 is sufficiently large,
¢ — 1, for the three basic solutions of Eq. (14), then
¥ = (€1, €2), is independent of 7 and Bi. This corre-
sponds to the case of -a rectangular heat source on a semi-
infinite rectangular flux channel, see Fig. 9.

Square Area on Semi-Infinite Square Flux Tube

For the special case of a square heat source on a semi-
infinite square, isotropic flux tube, the general solution re-
duces to a simpler expression which depends on one pa-
rameter only. The solution! was recast into the form9:

2

kA, Ry = —- [Z sin” (mme)

m=1 m

sin? (mme) sin®

nwe)
m*n?*V/m? + n?

where the characteristic length was selected as £ = /4,.
The relative size of the heat source was defined as ¢ =
VAs/A. where A, is the flux tube area. A correlation
equation was reported for the above expression®:

(19)

k\/A,R, = 0.47320 — 0.62075¢ + 0.1198¢%  (20)
in the range: 0 < e < 0.5, with a maximum relative error
of approximately 0.3%. The constant on the right-hand
side of the correlation equation is the value of the dimen-
sionless spreading resistance of an isoflux square source on
an isotropic half-space when the square root of the source
area is chosen as the characteristic length.

Isoflux Rectangular Source
on Isotropic Half-Space

The spreading resistance for an isoflux rectangular
source of dimensions: 2a x 2b on an isotropic half-space,
shown in Fig. 10, whose thermal conductivity is £ has a
closed form solution”:

kv/AR, = —\7/1_—2-)- {sinh_1 (%) + -!lgsinh_1 0

0 1 1\%?

cefivd-(ed) )
where 9 = a/b > 1 is the aspect ratio of the rectangle.
When the scale length is £ = /A4,, the dimensionless
spreading resistance becomes a weak function of g. For
a square heat source, the numerical value of the dimen-
sionless spreading resistance is kv/A,Rs = 0.4732 which
is very close to the numerical value for the isoflux cir-
cular source on an isotropic half-space and other singly-

connected heat source geometries such as an equilateral
triangle and a semi-circular heat source. The solution for

the Tectangular heat source on a compound half space,
shown in Fig. 11, may be obtained from the general so-
lution for the finite compound flux channel, provided that
(tz = 00,c = 00,d = . No closed form solution such as
that given by Eq. (21) exists.

Two-Dimensional Spreading- Resistances

The first two-dimensional spreading resistance case is
shown in Fig. 6. This case consists of an isoflux strip
of width, 2a, on an isotropic rectangular flux channel of
finite thickness, ¢, with uniform conductance over the bot-
tom surface. For this system the appropriate scale length
is £ = ¢, the half-width of the flux channel. The general
solution reduces to the following expression:

1 = sin’(nme) [nr + Bitanh(nwr)
kR, = w3¢e2 21 n3 [ 22)
oy

nw tanh(nrt) + Bi

with € = a/c,7 = t/c and Bi = hc/k.

When the relative thickness exceeds the critical value,
T > 2.65/, the previous result reduces to the result for the
case shown in Fig. 7, an isoflux strip on an isotropic, semi-
infinite flux channel for which the spreading resistance is
obtained from the expression!:

LR, = 1 = sin®(nme)
R, = m3e2 Z n3 (23)

n=1
which depends on the relative strip size only.

Effect of Heat Source Flux Distribution

The effect of the heat flux distribution on strip sources was
examined by Yovanovich®. Flux distributions of the form:
f(u) = (1 — u)* where u = z/a is the arbitrary relative
position in the strip source and the flux shape parameter
is p. Yovanovich reported the general result®:

)
n? nmwe wry (ne)

(24)
where I is the gamma function and J,4;/7 is the Bessel
function of the first kind of order 1+ 1/2. By means of the
general expression, Yovanovich obtained results for three
flux distributions: (i) equivalent isothermal flux distribu-
tion when p = —1/2, (i) isoflux strip when g = 0, and (iii)
parabolic flux distribution when p = 1/2. The general ex-
pression with 4 = —1/2 for the equivalent isothermal flux
distribution reduces to the previously reported result’:

1 1 o= sin(nme) [ 2 wtif2
kRs = —T(p+3/2)~ 1; — [—-—] J

1 oo

1 .
kRs= EZEESIH

n=1

(nme) Jo(ne) (25)

This expression can be compared against the true
isothermal closed-form expression?3:

tr,= L [fsn (39} ]

(26)




For € < 0.2, the previous result approaches the asymptote:
kR, = 71 In(2/me).

The parabolic flux distribution result® was obtained by
setting p = 1/2:

2 o= 1
kRs = —a Zl —3 siw (nwe)Ji(nmwe) (27)

o

For completeness the analytical, closed-form result for
the flux channel shown in Fig. 12 is reported here. In this
case the flux channel is isotropic, the cross-section changes
abruptly from a width of 2a to a width of 2b. The boundary
condition over the interface between the upper and lower
parts is not known. For the general case, € = a/b < 1,
the boundary condition is neither isothermal nor isoflux.
The true condition is an unknown variable temperature
distribution and an unknown variable flux distribution.
When ¢ = 1, the temperature and flux distributions are
known, however, the spreading resistance is not present.
The spreading resistance can be obtained by means of the
closed-form result?:

kRy = =

1 1 l+e 1-—¢2
5 [<e+;>ln [1_€}+21n[ P H (28)

Numerical values of ¥ = kR, are given in Table 3 for
the flux distributions defined by the flux distribution pa-
rameter: u = —1/2,0,1/2 and the true isothermal result
for a range of the relative strip size parameter «.

We observe that the numerical values for the equiva-
lent isothermal flux distribution, Eq. (25), and the true
isothermal, Eq. (26), approach each other as € — 0; how-
ever, there are large differences in the numerical values for
¢ > 0.6. The numerical values for the parabolic distribu-
tion are greater than the isoflux values which are greater
than the values for the isothermal strip. For very narrow
strips, € < 0.02, the maximum difference between the high-
est values corresponding to p = 1/2 and the lowest values
corresponding to u = —1/2 differ by less than 5%. This
implies that the spreading resistance for very narrow strips
depends weakly on the heat flux distribution.

In Table 4 the numerical values obtained from Eq. (28)
are compared against the mean values of Egs. (23) and (25)
for a range of the relative strip size.

The differences are less than 1% for ¢ < 0.20 and the
differences become negligible for € — 0.

SUMMARY

A general expression for the spreading resistance of an
isoflux rectangular source on the surface of a finite com-
pound rectangular flux channel was presented. The series
solution consists of three summations which correspond to

two strip solutions and a rectangle solution. In the general,
the dimensionless spreading resistance depends on several
dimensionless geometric and thermal parameters.

Results are presented for isotropic finite and semi-
infinite rectangular flux channels for the strip source. Re-
sults. are .also presented for the isoflux rectangular and
square source areas on an isotropic half-space.

A correlation equation is reported for the three-
dimensional spreading resistance for an isoflux square
source on an isotropic semi-infinite square flux tube.

Expressions which show the effect of heat flux distri-
bution over the strip source area are presented. Tabulated
values of the dimensionless spreading resistance for various
flux distributions are given.
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Table 2
Summary of Solutions for Isoflux Source

Configuration Limiting Values
Rectangular Heat Source

Finite Cofnpound Rectangular Flux Channel a,b,c,d,ty,ta,ky, ko, b
Semi-Infinite Compound Rectangular Flux Channel ty = o0

Finite Isotropic Rectangular Flux Channel k1 =ky
Semi-Infinite Isotropic Rectangular Flux Channel t1 &

Strip Heat Source

Finite Compound Rectangular Flux Channel a,c,b=d,t1,ta,k1,ky, 1
Semi-Infinite Compound Rectangular Flux Channel i = 00

Finite Isotropic Rectangular Flux Channel k1 = ke
Semi-Infinite Isotropic Rectangular Flux Channel t;] =+ o

Rectangular Source On a Half Space

Isotropic Half Space ¢ —00,d = 00,t; = 00

Compound Half Space c—00,d = 00,1ty — 00

Table 3
Numerical values of ¢ for y = -1/2, 0, and 1/2
€ 0.02 0.04 0.06 0.08 0.10 0.20 0.40 0.60 0.80
pw=-1/2 Eq. (25) 1.1011 0.8808 0.7518 0.6609 0.5902 0.3729 0.1658 0.0607 0.0067
u=0 Eq. (23) 1.1377 0.9172 0.7883 0.6970 0.6263 0.4083 0.1984 0.0882 0.0255

p=1/2 Eq. (27) 1.1545 0.9340 0.8051 0.7138 0.6430 0.4247 0.2134 0.1007 0.0338
T = Constant Eq. (26) 1.1015 0.8811 0.7523 0.6611 0.5905 0.3738 0.1691 0.0675 0.0160

Table 4
Typical numerical values of Eq. (28) and the average of Eqs. (23) and (25)
€ 0.02 0.20 0.40 0.60 0.80
Eq. (28) 1.122  0.3936 0.1860 0.0794 0.0214
Eq.(23) ;_ Eq.(25) 1.120 0.3911 0.1838 0.0779 0.0208
% difference 024 065 1.21 1.95 3.04
6




perfect contact
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Fig. 1 - Finite Compound Channel with Fig. 2 - Finite Compound Channel
Rectangular Heat Source with Strip Heat Source
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Fig. 4 - Semi-Infinite Coated Channel
with Rectangular Heat Source

Fig. 3 - Superposition of Solutions
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Fig. 5 - Finite Isotropic Channel with Fig. 6 - Finite Isotropic Channel with
Rectangular Heat Source Strip Heat Source
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Fig. 7 - Semi-Infinite Isotropic Channel Fig. 8 - Semi-Infinite Compound Channel
with Strip Heat Source with Strip Heat Source



Fig. 9 - Semi-Infinite Isotropic Channel with
Rectangular Heat Source

T=0

Fig. 11 - Compound Half Space with
Rectangular Heat Source

, T=0

Fig. 10 - Isotropic Half Space with
Rectangular Heat Source
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Fig. 12 - Infinite Channel with Abrupt
Change in Channel Width



