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Outline
* Introduction and problem description

 Literature review and objectives
* Model development

» Validation

« Summary and conclusions
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Problem Definition N 00

« 2D horizontal annulus ¥
 Steady state, natural convection

« Concentric inner and outer cylinders

* Isothermal boundary conditions, T, > T,

~00 ———> O Geometry:
= Relative boundary size

P/P = do/di (spheres)
= Effective gap spacing
5, = (d, —d.)/2 (spheres)
= Shape, orientation
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Parameter Definitions Waggrioo

<
 Total heat transfer rate non-dimensionalized by

Nusselt number
NU = U
K Pl (TI _To)

» P selected as characteristic length:

= For P, /P. — oo limit, scale length related to inner body
dimensions only

= Similar results for similar body shapes, orientations

Q
e )
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Parameter Definitions

» Dimensionless conduction shape factor
lim Nu, =S,

Ra << Rag,

 Effective conductivity

keff P NuPi | keff >1
k S k
» Rayleigh number
ra, = 980 -T,)(R)’
| LA
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Literature Review - Data

Experimental and Numerical Studies

» Concentric spherical enclosures
= Qver 20 publications with average heat transfer data
= Most experimental data for high Rayleigh number, boundary layer flow
= All other data from numerical simulations

* Other enclosure geometries
= Numerical data for circular, polygonal, rhombic, elliptical cylinders

IS0 EIE

» Correlations of experimental, numerical data
= Valid for limited ranges of Rayleigh number

= Geometry-dependent
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Literature Review - Models

<
 Analytical models available for concentric, eccentric

circular annulus
= Raithby & Hollands?®
= Kuehn and Goldstein??
» Boyd3® presents general correlation procedure for 2D
annulus with arbitrarily-shaped boundaries
= Requires correlation coefficient values from empirical data

= Difficult to implement for non-standard boundary shapes
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ODbjectives %3
<
» Analytical modeling of natural convection in
horizontal annulus

= Full range of Ra, from conduction to convection
= Applicable to wide range of geometries
- Inner and outer boundary shapes and orientation
- Relative boundary sizes
= Physically-based analysis

» Validate model using experimental, numerical data
from the literature

= Circular annulus
= Annuli with different inner, outer boundary shapes
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Model Development
» Assume linear superposition of diffusive, convective limits N 4
Nup =S, + Nug,,

« Kuehn and Goldstein®® data for circular annulus

» Kuehn and Goldstein’ y
» Kuehn and Goldstein® . R(,l-1 :
NLLCOH\. [ ]
a | |
1 . . -
10 /. 2" .
5 = S
3\)
=
| d /d. =2.6
10" |
N NUgon = NUp = Sp
! R | Lol IR | N |
10* 10° 10° 10’ 108

RaPi
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Model Development WalOO

» General model based on Churchill and Usagi3?
composite solution technique

Nu, =S, + (LJ +( : j
! ! Nu,, Nu,,

» Combination of three asymptotic solutions
S; = conduction shape factor

—1-1/n

Nu, = transition flow convection

Nu,, = laminar boundary layer convection

« Combination parameter n determined from validation
with numerical, experimental data
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Conduction Shape Factor "

<
» Correlations, models, from handbooks

» Numerical simulations
» Approximate method from equivalent circular annulus

S* _ 2T
* In(d,/d;),
= Effective d, Inner perimeter d. =P /x
diameter ratio | 5" = AN P2
i Je Enclosed area doz\/ +—
7T 7T

= Dimensionless conduction shape factor
5 =27
" Iny4rx(A/RP?)+1
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Boundary Layer Convection

* Assumptions
= Laminar flow

Ly
. Tb uniform 1, R,
= Non-intersecting boundary layers
» Series combination of resistances
R=R +R, R=1_1 Rg=l_l
Q Q
* Non-dimensionalize using Nusselt number
o _ 1 Nu.
Ri :TI Tb Ro :Tb To Nubl — — |
Q Q k(R +R,) 1+Y
¢_Ti -1, R :Nuo

"T,-T, R Nu,

0 |
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Boundary Layer Convection
 Convection modeled using Yovanovich3land Jafarpurs®
Nu . =F(Pr)G ; Ra/;
» Laminar boundary layer convection asymptote
Nu  F(Pr)G,Ray’
Nu,, = = ST
1+V¢  (1+V9)
F(Pr)G, Ra;*

1+ (R/P, (G, /Gy J° |

~ (1.028)F (Pr)Rag*
[1 d/d )3/5]5/4 (circular annulus)
_|_
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Transition Flow g

» Boundary layers merge when Ra < Ra,,
* Model as equivalent circular annulus

» Three distinct regions are formed

central region—

» Central region

= Radial conduction ‘g

= Buoyancy induced flow bottom-end region
 For narrow gap spacing, o, <<,
temperature, velocity in central region

rO
=T, :_L(Ti _Tb)’ Ty = fitl,
5,/2 T
2 K : N
UZM(Ti_TO)(ij Yy
120 2 ) [\o,2) o,/2 :
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Transition Flow 3

» Enthalpy balance in top-end and
bottom-end regions 0<<0,* | 0

o _PC% 9.8(T,-T,)6; %/
"o 720v ~ o dii

» Transition flow asymptote ‘ '
3 %
Nutr — 1 (5e/P|) . %' 5
90 (l+ Po/Pl) ! A=y L=
O . 1
3 L0,
Nu, =L (Go/di-1) o /%
7207* (1+d /d) =
(circular annulus) 0>>0. 7 N
(e s =|
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Validation: Circular Annulus Wa“)‘)
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Clrcular Annulus
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Circular Annulus Waterloo
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Concentric Elliptic Cylinders Waterloo
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Square and Diamond In Circle
P /P - 102
- . 393 }square in circle -
-Chang et al.*% * 1.96 i
el - 3 93 | diamond _
= L A 6| .
i f 3 93} square 410’
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Hexagon in Circular Cylinder “*&5°°
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Circle in Square Cylinder
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Summary Wa 00

» Analytical study of natural convection heat transfer
for i1sothermal, horizontal annuli

* Model developed based on combination of analytic,
asymptotic relationships

= Diffusive limit
= Laminar boundary layer convection

= Transition flow convection

» Validated using previous data for similar, different
Inner and outer cylinder shapes

*» 6 -9% RMS difference between model and data
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