APPROXIMATE SOLUTION FOR PRESSURE DROP IN MICROCHANNELS OF ARBITRARY CROSS-SECTIONS

M. Bahrami
M. M. Yovanovich
J. R. Culham

Microelectronics Heat Transfer Laboratory
Department of Mechanical Engineering
University of Waterloo
Ontario, Canada
Flow in Microchannels
motivations and objectives

• Motivation and Objective
• Ideas and Issues
• Characteristic Length Scales
• Solution for Arbitrary Cross-Section Channels
• Comparisons with Experimental Data
• Comparisons with Numerical Data
• Summary and Conclusions

Approximate Solution for Pressure Drop in Microchannels of Arbitrary Cross-Sections
AIAA 2006-3119, June 5 -8, 2006, San Francisco, CA.
Flow in Microchannels

motivations and objectives

Applications:

- Microelectronics cooling and high capacity heat exchangers
- Fuel cell technologies
- Biomedical devices

Features:

- High surface area to volume ratio
- High heat transfer coefficient (low film resistance heatsinks)
- Small size, compact heat exchangers
Microchannel heatsinks

ideas and issues

From K. E. Goodson (2002)

Close up of 60 µm microchannel
Approximate Solution for Pressure Drop in Microchannels of Arbitrary Cross-Sections
AIAA 2006-3119, June 5 -8, 2006, San Francisco, CA.

Characteristics Length

D_h: hydraulics diameter

Analytical solutions for elliptical and rectangular channels where D_h is used as length scale
Approximate Solution for Pressure Drop in Microchannels of Arbitrary Cross-Sections
AIAA 2006-3119, June 5 -8, 2006, San Francisco, CA.
Navier-Stokes equations reduce to the Poisson equation:

\[\nabla^2 w = \frac{1}{\mu} \frac{dP}{dz} \quad \text{with} \quad w = 0 \quad \text{on} \quad \Gamma \]

- Torsion in beams and fully developed, laminar flow in ducts are mathematically similar

- Saint-Venant (1880) found that the torsional rigidity of a singly-connected arbitrary cross-section shaft can be accurately approximated by using an equivalent elliptical cross-section

- Solution for the elliptical duct has a unique geometrical property

\[f \frac{\text{Re}}{\sqrt{A}} = 32\pi^2 I_p^* \frac{\sqrt{A}}{P} \quad \text{where} \quad I_p^* = I_p / A^2 \quad \text{and} \quad I_p = \int_A \left(x^2 + y^2 \right) dA \]
Approximate Model

hyper-ellipse channels

\[\left(\frac{x}{a} \right)^n + \left(\frac{y}{b} \right)^n = 1 \]

\[\varepsilon = \frac{b}{a} \]

Model, \(n = 2 \)

- \(n = 3 \)
- \(n = 5.5 \)
- \(n = 10 \)
Comparison with Data

parallel plates microchannels

Gao et al. data (2002)
Rectangular channels dimensions
demineralized water
\(b = 25 \text{ mm} \quad c = 300 \mu \text{m} \)
Comparison with Data

trapezoidal microchannels

channel # N1-100 (trapezoidal cross-section)
channel material: silicon
de-ionized water

$a = 100 \, \mu m$
$b = 20.10 \, \mu m$
$h = 56.42 \, \mu m$

$\varepsilon = 1.064$
$\beta = 0.557$

$f_{Re_{\sqrt{A}}} = \mu Re_{\sqrt{A}} \sqrt{A}$

model ± 10%
Comparison with Data

rectangular microchannels

\[
\frac{f \cdot \text{Re}_{\sqrt{A}}}{A} = 32 \pi^2 I_p^* \sqrt{A/P}
\]

\[
I_p^* = I_p / A^2
\]

\[\epsilon = c / b\]
Comparison with Data

triangular and trapezoidal microchannels

\[f \text{Re}_{\sqrt{A}} = 32 \pi^2 I_p^* \sqrt{A/P} \]

\[I_p^* = I_p / A^2 \]

Wu and Chang data (2003)

Isosceles triangular microchannels

Isosceles trapezoidal microchannels
Comparison with Numerical Data

sine duct

\[y = b (1 + \cos \pi x / a) \]

Data from Shah and London
Comparison with Numerical Data

Data from Shah and London
Comparison with Numerical Data

circular sector

Data from Shah and London

Approximate Solution for Pressure Drop in Microchannels of Arbitrary Cross-Sections
AIAA 2006-3119, June 5-8, 2006, San Francisco, CA.
Comparison with Numerical Data

circular segment

Data from Shah and London
Comparison with Numerical Data

rhombic duct

Data from Shah and London
Comparison with Numerical Data
square duct with 2 adjacent round corners

Data from Oosthuizen (2005)
Comparison with Numerical Data

moon-shaped duct

Data from Shah and London
Comparison with Numerical Data

Rectangular duct with semi-circular ends

Data from Shah and London
A new compact analytical model is developed and validated with experimental and numerical data for a variety of microchannel cross-sections including:

- Rectangular
- Trapezoidal
- Isosceles triangular
- Square
- Circular
- Other cross-sections

Square root of area, as the characteristic length scale, is superior to the hydraulic diameter