Thermal Contact Resistance of Non-Conforming Rough Surfaces
Part 2: Thermal Model

M. Bahrami
J. R. Culham
M. M. Yovanovich
G. E. Schneider

Department of Mechanical Engineering
Microelectronics Heat Transfer Laboratory
University of Waterloo
Waterloo, ON, Canada
CONTENTS

• introduction
• objectives
• literature review
• present model
• numerical approach and results
• parametric study
• alternative approach (correlations)
• comparison with experimental data
• summary and conclusions
INTRODUCTION

• conduction (microcontacts)
• conduction (interstitial fluid)
• radiation across the gap

• two sets of resistances in series represent TCR in a vacuum

• many researchers assumed

\[R_j : R_{mic} + R_{mac} \]

• Bahrami et al. (2003) reviewed existing non-conforming rough models
Thermal resistance is defined as,

\[
R : = \frac{T}{Q}
\]

\[
R_j : R_{L,1} + R_{s,1} + R_{s,2} + R_{L,2}
\]

\[
\left(\frac{1}{R_s} \right)_{1,2} : \left(\begin{array}{c}
\frac{1}{R_{s,1}} \\
\vdots \\
\frac{1}{R_{s,2}} \\
\end{array} \right)_{1,2}
\]
TCR PROBLEM STATEMENT

Geometrical Analysis

Macro-Geometry

Micro-Geometry

Mechanical Analysis

Macro-Contact (Bulk Deformations)

Coupled

Micro-Contacts (Asperity Deformations)

Mechanical Analysis

Macro-Contact (Bulk Deformations)

Micro-Contacts (Asperity Deformations)

Thermal Analysis

Macro-Constriction Resistance

Micro-Constriction Resistance

Superposition

Thermal Joint Resistance
OBJECTIVES

• develop analytical TCR model for entire range of contacts:
 – conforming rough
 – elastoconstriction
 – transition region

• study effects of input parameters on TCR

• derive simple correlations for determining TCR
GEOMETRICAL MODELING

a) contact of non-conforming rough surfaces

b) contact of two rough spherical segments

c) rough sphere-flat contact, effective radius of curvature

d) equivalent sphere-flat contact, effective radius and roughness

\[
\begin{bmatrix}
\frac{b_L^2}{2L}
\end{bmatrix}
\]
FLUX TUBE SOLUTION

• inside macrocontact area a number of parallel cylindrical heat channels exist

• basic element for macro and micro thermal analysis

• Cooper et al. (1969)

\[R_{\text{flux tube 1}} + R_{\text{flux tube 2}} : \frac{b \sqrt{L b}}{2k_s a} : \frac{\sqrt{L b^{1.5}}}{2k_s a} \]

\[L : \frac{a}{b} \quad k_s : \frac{2k_1 k_2}{k_1 + k_2} \]
PRESENT MODEL (ASSUMPTIONS)

- solids are isotropic
- radiation heat transfer is negligible
- microcontacts are circular and steady-state heat transfer
- isothermal microcontacts
- microcontacts are flat
- surfaces are clean

\[R_j : R_L + R_s \]

\[R_L : \frac{\dot{Q} a_L}{b_L} \frac{b^{3/2}}{2k_s a_L} \]
MICROCONTACTS RESISTANCE

\[R_s \hat{Y}_r \hat{p} : \frac{b \hat{Y}_r \hat{p}}{2k_s a_s \hat{y}_r \hat{p}} \]

\[L \hat{Y}_r \hat{p} : \sqrt{\frac{A_r \hat{Y}_r \hat{p}}{A_a \hat{y}_r \hat{p}}} : \sqrt{\frac{1}{2} \text{erfc} \ R \hat{Y}_r \hat{p}} \]

\[n_s : \frac{1}{16} \hat{Y}_m \hat{p}^2 \frac{\exp \left[-2R \hat{Y}_r \hat{p}^2 \right]}{\text{erfc} \ R \hat{y}_r \hat{p}} A_a \]

\[\frac{dR_s \hat{Y}_r \hat{p}}{n_s \hat{y}_r \hat{p}} \]

\[R_s : \frac{1}{1/dR_s \hat{Y}_r \hat{p}} \]

Thermal Contact Resistance of Non-Conforming Rough Surfaces, Part II
NUMERICAL RESULTS

\[
R^*_s = 2b_L k_s R_s
\]

\[
\epsilon = a_s / b_s
\]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>25,\text{mm}</td>
</tr>
<tr>
<td>]</td>
<td>1.41,\text{Sm}</td>
</tr>
<tr>
<td>m</td>
<td>0.107,\text{?}</td>
</tr>
<tr>
<td>(b_L)</td>
<td>25,\text{mm}</td>
</tr>
<tr>
<td>(k_s)</td>
<td>16,\text{W/mK}</td>
</tr>
<tr>
<td>F</td>
<td>50,\text{N}</td>
</tr>
<tr>
<td>(E^r)</td>
<td>112.1,\text{GPa}</td>
</tr>
<tr>
<td>(c_1/c_2)</td>
<td>6.27,\text{GPa} / 0.15,\text{?}</td>
</tr>
<tr>
<td>(E)</td>
<td>112.1,\text{GPa}</td>
</tr>
<tr>
<td>(m)</td>
<td>0.107,\text{?}</td>
</tr>
<tr>
<td>(a_s)</td>
<td>25,\text{mm}</td>
</tr>
<tr>
<td>(b_s)</td>
<td>16,\text{W/mK}</td>
</tr>
</tbody>
</table>

Thermal Contact Resistance of Non-Conforming Rough Surfaces, Part II
EFFECT OF ROUGHNESS

\[R^* = 2\beta L k_s R \]

\[R_{Hz}^* \]

\[R_{j min}^* \]

\[R_L^* \]

\[R_s^* \]
EFFECT OF LOAD

\[R^* = 2 b_L k_s R \]

\[F \text{ (N)} \]

\[10^0 \] \[10^1 \] \[10^2 \] \[10^3 \] \[10^4 \]

\[10^0 \] \[10^1 \] \[10^2 \] \[10^3 \] \[10^4 \]
EFFECT OF RADIUS OF CURVATURE

\[R^* = 2 b L k_s R \]

\[\rho (m) \]

\[R_{Hz}^* \]
\[R_j^* \]
\[R_s^* \]
\[R_L^* \]
ALTERNATIVE APPROACH

- conforming rough conductance, Yovanovich (1982)

\[h_s : 1.25 k_s \dot{Y}^m \frac{P}{H_{mic}}^{0.95} \]

- heat transfer in non-conforming rough contact:

\[Q : \pi \frac{h_s \dot{Y}_r \delta}{T_s dA_a} \]

- using pressure distribution, Part I and

\[R : \frac{1}{\dot{Y}_h A_a} \]

\[R_s : \frac{\int \dot{Y}_l + s HP}{1.25Z m k_s a_L^2} \left(\frac{H^r}{P_0} \right)^s \]

Thermal Contact Resistance of Non-Conforming Rough Surfaces, Part II
PROCEDURE FOR UTILIZING THE MODEL

If an estimate of microhardness is available, set $c_1 = H_{micro}$, $c_2 = 0$.

If m may be estimated from:

$m = 0.076 \sigma^{0.52}$

$\sigma [\mu m]$

If an estimate of microhardness is available, set $c_1 = H_{micro}$, $c_2 = 0$.

$m = 0.076 \sigma^{0.52}$

$\sigma [\mu m]$

Start

Input

F, ρ, σ, m, k_s

E', b_l, c_1, c_2

$\sigma = \sqrt{\sigma_1^2 + \sigma_2^2}$

$m = \sqrt{m_1^2 + m_2^2}$

$\rho = \left[\frac{1}{\rho_1} + \frac{1}{\rho_2}\right]^{-1}$

$k_s = 2k_1k_2/(k_1 + k_2)$

$E' = \left[\frac{1 - \nu_1^2}{E_1} + \frac{1 - \nu_2^2}{E_2}\right]^{-1}$

$F_c = \frac{4E'}{3\rho} \left(\max\{0, (b_i^2 - 2.25 \sigma \rho)\}\right)^{1/2}$

$s = 0.95 \left(1 + 0.071c_2\right)$

$H' = c_1 \left(1.62 \sigma^*/m\right)^{1/2}$

$\sigma^* = \frac{\sigma}{\sigma_0 [\mu m]}$

$\alpha = \frac{\sigma}{\rho/a_{hc}^2}$

$\tau = \frac{\rho}{a_{hc}}$

$a_{hc} = (0.75F \rho/E')^{1/3}$

$P_{0,hc} = 1.5F/\pi a_{hc}^2$

$P_0 = \frac{P_0}{P_{0,hc}} = \frac{1}{1 + 1.37 \tau^{-0.075} \alpha}$

$\dot{a}_L = \frac{a_L}{a_{hc}} = 1 - 1.5 \ln P_0$

$-0.14 \ln^2 P_0 - 0.11 \ln^3 P_0$

$\gamma = 1.5P_0 (a_L)^2 - 1$

$R^*_s = \left(\pi H' b_l^2 / F\right)^s$ $

a_L = b_l$

Flat surface

$R^*_s = \left(\frac{1 + s \gamma}{a_L \left(\frac{P_0}{H'}\right)^s}\right)^s$, where

$R^*_s = 1.25\pi k_s b_l^2 (m/\sigma) R_s$

$R_L = \frac{(1 - a_L / b_l)^{1/2}}{2k_s a_L}$

$R_f = R_L + R_s$

End

$P_{0,hc} = 1.5F/\pi a_{hc}^2$

$\gamma = 1.5P_0 (a_L)^2 - 1$
EXPERIMENTAL DATA

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Researcher</th>
<th>Material(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Antonetti</td>
<td>Ni200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ni200-Ag</td>
</tr>
<tr>
<td>B</td>
<td>Burde</td>
<td>SPS 245, CS</td>
</tr>
<tr>
<td>CC</td>
<td>Clausing-Chao</td>
<td>A12024 T4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brass Anaconda</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mg AZ 31B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SS303</td>
</tr>
<tr>
<td>F</td>
<td>Fisher</td>
<td>Ni 200-Carbon Steel</td>
</tr>
<tr>
<td>H</td>
<td>Hegazy</td>
<td>Ni200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SS304</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zircaloy4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zr-2.5%wt Nb</td>
</tr>
<tr>
<td>K</td>
<td>Kitscha</td>
<td>Steel 1020-CS</td>
</tr>
<tr>
<td>MM</td>
<td>McMillan-Mikic</td>
<td>SS303</td>
</tr>
<tr>
<td>MR</td>
<td>Mikic-Rohsenow</td>
<td>SS305</td>
</tr>
<tr>
<td>M</td>
<td>Milanez et al.</td>
<td>SS304</td>
</tr>
</tbody>
</table>

Parameter Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$7.15 \leq b_L \leq 14.28$ mm</td>
<td></td>
</tr>
<tr>
<td>$25.64 \leq E' \leq 114.0$ GPa</td>
<td></td>
</tr>
<tr>
<td>$7.72 \leq F \leq 16763.9$ N</td>
<td></td>
</tr>
<tr>
<td>$16.6 \leq k_s \leq 227.2$ W/mK</td>
<td></td>
</tr>
<tr>
<td>$0.04 \leq m \leq 0.34$</td>
<td></td>
</tr>
<tr>
<td>$0.12 \leq \alpha \leq 13.94$</td>
<td></td>
</tr>
<tr>
<td>$0.013 \leq \eta \leq 0.12$</td>
<td></td>
</tr>
</tbody>
</table>
COMPARISON WITH DATA

\[E : \frac{\dot{\gamma}_f/m \cdot \gamma_f + H_p}{1.25Z_bLb^2} \left(\frac{H_f}{P_0} \right)^s + \frac{\dot{\gamma}_f B}{2B} \]

\[R_j^D : k_s b_L R_j \]

\[B : \frac{a_L}{b_L} : 1.80 \left(\frac{a_{Hz}}{b_L} \right) \sqrt{F + 0.31} \sim 0.056 \sim 0.028 \]

Increasing load
SUMMARY AND CONCLUSIONS

- superposition of macro and micro thermal resistance

- effects of major parameters, i.e., roughness, load, and radius of curvature on TCR were investigated

- for non-conforming rough contact, there is a value of surface roughness that minimizes TCR

- at relatively large loads effect of roughness on TCR becomes negligible

- simple correlations were derived that cover entire range of TCR
SUMMARY AND CONCLUSIONS 2

• model was compared with more than 700 experimental data points, collected by many researchers

• comparison includes all three regions of TCR and wide range of mechanical, thermal, and surfaces characteristics

• data include contact between dissimilar metals such as Ni200-Ag and SS-CS

• RMS relative difference between the model and the data was estimated to be approximately 11.4%
ACKNOWLEDGEMENTS

• Natural Sciences and Engineering Research Council of Canada (NSERC)

• The Center for Microelectronics Assembly and Packaging (CMAP)
CONFORMING ROUGH DATA

<table>
<thead>
<tr>
<th>Ref.</th>
<th>E^r</th>
<th>γ</th>
<th>m</th>
<th>c_1</th>
<th>c_2</th>
<th>k_s</th>
<th>b_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>A,P3435</td>
<td>112.1</td>
<td>8.48</td>
<td>6.3</td>
<td>.34</td>
<td>.26</td>
<td>67.1</td>
<td>14.3</td>
</tr>
<tr>
<td>A,P2627</td>
<td>112.1</td>
<td>1.23</td>
<td>6.3</td>
<td>.14</td>
<td>.26</td>
<td>64.5</td>
<td>14.3</td>
</tr>
<tr>
<td>A,P1011</td>
<td>112.1</td>
<td>4.27</td>
<td>6.3</td>
<td>.24</td>
<td>.26</td>
<td>67.7</td>
<td>14.3</td>
</tr>
<tr>
<td>A,P0809</td>
<td>112.1</td>
<td>4.29</td>
<td>6.3</td>
<td>.24</td>
<td>.26</td>
<td>67.2</td>
<td>14.3</td>
</tr>
<tr>
<td>A,P1617</td>
<td>63.9</td>
<td>4.46</td>
<td>6.3</td>
<td>.39</td>
<td>0</td>
<td>100</td>
<td>14.3</td>
</tr>
<tr>
<td>A,P3233</td>
<td>63.9</td>
<td>8.03</td>
<td>6.3</td>
<td>.39</td>
<td>0</td>
<td>100</td>
<td>14.3</td>
</tr>
<tr>
<td>H,NI12</td>
<td>112.1</td>
<td>3.43</td>
<td>6.3</td>
<td>.26</td>
<td>75.3</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>H,NI34</td>
<td>112.1</td>
<td>4.24</td>
<td>6.3</td>
<td>.26</td>
<td>76.0</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>H,NI56</td>
<td>112.1</td>
<td>9.53</td>
<td>6.3</td>
<td>.26</td>
<td>75.9</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>H,NI78</td>
<td>112.1</td>
<td>13.9</td>
<td>6.3</td>
<td>.26</td>
<td>75.7</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>H,NI910</td>
<td>112.1</td>
<td>0.48</td>
<td>6.3</td>
<td>.26</td>
<td>75.8</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>H,SS12</td>
<td>112.1</td>
<td>2.71</td>
<td>6.3</td>
<td>.23</td>
<td>19.2</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>H,SS34</td>
<td>112.1</td>
<td>5.88</td>
<td>6.3</td>
<td>.23</td>
<td>19.1</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>H,SS56</td>
<td>112.1</td>
<td>10.9</td>
<td>6.3</td>
<td>.23</td>
<td>18.9</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>H,SS78</td>
<td>112.1</td>
<td>0.61</td>
<td>6.3</td>
<td>.23</td>
<td>18.9</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>H,ZN12</td>
<td>57.3</td>
<td>2.75</td>
<td>3.3</td>
<td>.15</td>
<td>16.6</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>H,ZN34</td>
<td>57.3</td>
<td>3.14</td>
<td>3.3</td>
<td>.15</td>
<td>17.5</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>H,ZN56</td>
<td>57.3</td>
<td>7.92</td>
<td>3.3</td>
<td>.15</td>
<td>18.6</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>H,ZN78</td>
<td>57.3</td>
<td>0.92</td>
<td>3.3</td>
<td>.15</td>
<td>18.6</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>M,SS1</td>
<td>113.8</td>
<td>0.72</td>
<td>6.3</td>
<td>.23</td>
<td>18.8</td>
<td>12.5</td>
<td></td>
</tr>
</tbody>
</table>
ROUGH SPHERE-FLAT DATA

<table>
<thead>
<tr>
<th>Ref.</th>
<th>E'</th>
<th>α/m</th>
<th>c_1/c_2</th>
<th>k_s</th>
<th>b_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>B,A-1</td>
<td>114.0</td>
<td>0.63/.04</td>
<td>.013</td>
<td>3.9/0</td>
<td>40.7</td>
</tr>
<tr>
<td>B,A-2</td>
<td>114.0</td>
<td>1.31/.07</td>
<td>.014</td>
<td>3.9/0</td>
<td>40.7</td>
</tr>
<tr>
<td>B,A-3</td>
<td>114.0</td>
<td>2.44/.22</td>
<td>.014</td>
<td>3.9/0</td>
<td>40.7</td>
</tr>
<tr>
<td>B,A-4</td>
<td>114.0</td>
<td>2.56/.08</td>
<td>.019</td>
<td>4.4/0</td>
<td>40.7</td>
</tr>
<tr>
<td>B,A-5</td>
<td>114.0</td>
<td>2.59/.10</td>
<td>.025</td>
<td>4.4/0</td>
<td>40.7</td>
</tr>
<tr>
<td>B,A-6</td>
<td>114.0</td>
<td>2.58/.10</td>
<td>.038</td>
<td>4.4/0</td>
<td>40.7</td>
</tr>
<tr>
<td>CC,2A</td>
<td>38.66</td>
<td>0.42/-</td>
<td>14.0</td>
<td>1.6/.04</td>
<td>141</td>
</tr>
<tr>
<td>CC,8A</td>
<td>38.66</td>
<td>2.26/-</td>
<td>14.7</td>
<td>1.6/.04</td>
<td>141</td>
</tr>
<tr>
<td>CC,1B</td>
<td>49.62</td>
<td>0.47/-</td>
<td>3.87</td>
<td>3.0/.17</td>
<td>125</td>
</tr>
<tr>
<td>CC,2B</td>
<td>49.62</td>
<td>0.51/-</td>
<td>4.07</td>
<td>3.0/.17</td>
<td>125</td>
</tr>
<tr>
<td>CC,3B</td>
<td>49.62</td>
<td>0.51/-</td>
<td>3.34</td>
<td>3.0/.17</td>
<td>102</td>
</tr>
<tr>
<td>CC,4B</td>
<td>49.62</td>
<td>0.51/-</td>
<td>4.07</td>
<td>3.0/.17</td>
<td>125</td>
</tr>
<tr>
<td>CC,3S</td>
<td>113.7</td>
<td>0.11/-</td>
<td>21.2</td>
<td>4.6/.13</td>
<td>17.8</td>
</tr>
<tr>
<td>CC,2M</td>
<td>25.64</td>
<td>0.11/-</td>
<td>30.3</td>
<td>.41/0</td>
<td>96</td>
</tr>
<tr>
<td>F,11A</td>
<td>113.1</td>
<td>0.12/-</td>
<td>.019</td>
<td>4.0/0</td>
<td>57.9</td>
</tr>
<tr>
<td>F,11B</td>
<td>113.1</td>
<td>0.12/-</td>
<td>.038</td>
<td>4.0/0</td>
<td>57.9</td>
</tr>
<tr>
<td>F,13A</td>
<td>113.1</td>
<td>0.06/-</td>
<td>.038</td>
<td>4.0/0</td>
<td>58.1</td>
</tr>
<tr>
<td>K,T1</td>
<td>113.8</td>
<td>0.76/-</td>
<td>.014</td>
<td>4.0/0</td>
<td>51.4</td>
</tr>
<tr>
<td>K,T2</td>
<td>113.8</td>
<td>0.13/-</td>
<td>.014</td>
<td>4.0/0</td>
<td>51.4</td>
</tr>
<tr>
<td>MM,T1</td>
<td>113.7</td>
<td>2.7/.06</td>
<td>.128</td>
<td>4.0/0</td>
<td>17.3</td>
</tr>
<tr>
<td>MM,T2</td>
<td>113.7</td>
<td>1.75/.07</td>
<td>2.44</td>
<td>4.0/0</td>
<td>22</td>
</tr>
<tr>
<td>MR,T1</td>
<td>107.1</td>
<td>4.83/-</td>
<td>21.2</td>
<td>4.2/0</td>
<td>19.9</td>
</tr>
<tr>
<td>MR,T2</td>
<td>107.1</td>
<td>3.87/-</td>
<td>39.7</td>
<td>4.2/0</td>
<td>19.9</td>
</tr>
</tbody>
</table>
CORRELATIONS

\[F_c : \frac{4E'}{3} \lambda_{\max}^2 \frac{b_L}{\gamma} 2.25 \] \(\hat{R}_s^{3/2} \)

\[R_s^* = \begin{cases}
\left(\frac{\pi H' b_L^2}{F} \right)^s
\left(\frac{b_L}{a_L} \right)^2 \left(\frac{H'}{P_0} \right)^s (1 + s\gamma)
\left(\frac{H'}{P_0,c} \right)^s (1 + s\gamma_c) + \left(\frac{\pi H' b_L^2}{F - F_c} \right)^s & F \leq F_c \\
& F \geq F_c
\end{cases} \]

\[R_s^{\text{D}} : 1.25 \lambda b_L^2 k_s \gamma m/\text{Br} R_s \]

\[s : 0.95/\gamma_1 + 0.071 c_2 \beta \]

\[H_r : c_1 \gamma_1, 62 \] \(r/m \beta^2 \)

\[P_r^0 : \frac{P_0}{P_{0,H\gamma}} : \frac{1}{1 + 1.37F \beta^{0.075}} \]

\[a_r^L : \frac{a_L}{a_{H\gamma}} : 1.80 \sqrt{F + 0.31 \beta^{0.056}} \beta^{0.028} \]