Fluid Flow and Heat Transfer From Elliptical Cylinders: Analytical Approach

M. M. Yovanovich, Fellow AIAA
W. A. Khan
J. R. Culham

Microelectronics Heat Transfer Laboratory
Department of Mechanical Engineering
University of Waterloo

37th AIAA Thermophysics Conference, Doubletree Jantzen Beach
Portland, Oregon, 28 Jun - 1 Jul 2004
\[\xi = \xi_0 \]

\[U(s) \]

\[\delta(s) \]

\[\epsilon = \frac{b}{a} \]

\[e = \sqrt{1 - \epsilon^2} \]

\[\mathcal{L} = 4a \frac{E(e)}{\pi} \]
Literature Review

- No analytical work available
- Experimental
- Numerical
Objectives

Develop models for:

- Fluid flow (total drag coefficient)
- Heat transfer (local and average heat transfer coefficients under UWT and UWF)
Assumptions

- Flow normal to cylinder axis
- Steady, laminar and 2-D flow
- Incompressible fluid with constant properties
- Thin hydrodynamic boundary layer
- No energy dissipation in thermal boundary layer
- No slip at cylinder wall
- No mass flow through cylinder wall
- Inviscid flow outside hydrodynamic boundary layer
Governing Equations

Continuity:
\[\frac{\partial u}{\partial s} + \frac{\partial v}{\partial \eta} = 0 \]

Momentum:
\[u \frac{\partial u}{\partial s} + v \frac{\partial u}{\partial \eta} = -\frac{1}{\rho} \frac{dP}{ds} + \nu \frac{\partial^2 u}{\partial \eta^2} \]

Energy:
\[u \frac{\partial T}{\partial s} + v \frac{\partial T}{\partial \eta} = \alpha \frac{\partial^2 T}{\partial \eta^2} \]
Velocity Profile:

\[
\frac{u}{U(s)} = (2\eta - 2\eta^3 + \eta^4) + \frac{\lambda}{6} (\eta - 3\eta^2 + 3\eta^3 - \eta^4)
\]

where \(0 \leq \eta \leq 1\) and \(\lambda = \frac{\delta^2}{\nu} \frac{dU(s)}{ds}\)

Temperature Profiles:

For UWT:

\[
\frac{T - T_\infty}{T_w - T_\infty} = 1 - \frac{3}{2} \eta_T + \frac{1}{2} \eta_T^3
\]

For UWF:

\[
T - T_\infty = \frac{2q \delta_T}{3k_f} \left(1 - \frac{3}{2} \eta_T + \frac{1}{2} \eta_T^3\right)
\]
Fluid Flow Model

Specify Approach Velocity and Velocity Profile

θ-Momentum Equation

Pressure Drag Coefficient (C_{Dp})

Momentum Integral Equation

Hydrodynamic Boundary Layer Thickness (δ)

Newton’s Law of Viscosity

Friction Drag Coefficient (C_{Df})

Total Drag Coefficient

$C_D = C_{Df} + C_{Dp}$
Heat Transfer Model

Specify Temperature Profile Inside Thermal Boundary Layer

Velocity Profile and Hydrodynamic Boundary Layer Thickness

Energy Integral Equation

Thermal Boundary Layer Thickness δ_T

Newton’s Law of Cooling

Local Heat Transfer Coefficient

Average Heat Transfer Coefficient
Analytical Results (Fluid Flow)

Total Drag Coefficient:

\[
C_D = \frac{1.353 + 4.43\epsilon^{1.35}}{\sqrt{Re_L}} + \left(1.1526 + \frac{1.26}{Re_L}\right)\epsilon^{0.95}
\]

when \(\epsilon \to 1\)

\[
C_D = \frac{5.786}{\sqrt{Re_D}} + 1.152 + \frac{1.260}{Re_D}
\]

when \(\epsilon \to 0\)

\[
C_D = \frac{1.353}{\sqrt{Re_L}}
\]
Heat Transfer Parameter:

\[
\frac{Nu_L}{Re_L^{1/2} Pr^{1/3}} = \begin{cases}
0.75 - 0.16 \exp \left(\frac{-0.018}{\epsilon^{3.1}} \right) & \text{UWT} \\
0.91 - 0.31 \exp \left(\frac{-0.09}{\epsilon^{1.79}} \right) & \text{UWF}
\end{cases}
\]

when \(\epsilon \rightarrow 1 \)

\[
\frac{Nu_D}{Re_D^{1/2} Pr^{1/3}} = \begin{cases}
0.5930 & \text{UWT} \\
0.6321 & \text{UWF}
\end{cases}
\]

when \(\epsilon \rightarrow 0 \)

\[
\frac{Nu_L}{Re_L^{1/2} Pr^{1/3}} = \begin{cases}
0.750 & \text{UWT} \\
0.912 & \text{UWF}
\end{cases}
\]
Local Shear Stress

\[C_{r} \sqrt{R_e} \]

\[\theta \text{ (Radians)} \]

\(\varepsilon = 1 \) (Circular Cylinder)
\(\varepsilon = \frac{1}{2} \) (Elliptical Cylinder)
\(\varepsilon = \frac{1}{3} \) (Elliptical Cylinder)
\(\varepsilon = \frac{1}{4} \) (Elliptical Cylinder)
Total Drag Coefficient with Reynolds Number

![Graph showing the relationship between drag coefficient (C_D) and Reynolds number (Re_L).](image)

- **Analytical (Present Model)**
- **Experimental (Wieselsberger)**
- **Analytical (Present Model, \(\varepsilon = 0.5 \))**
- **Analytical (Present Model, \(\varepsilon = 0.25 \))**
- **Theoretical (Van Dyke)**

Legend:
- **Circular Cylinder**
- **Elliptical Cylinder**
- **Finite Plate**
Average Nusselt Number with Reynolds Number

\[\text{Pr} = 0.71 \]
Average Nusselt Number with Reynolds Number

\[\epsilon = 1:2 \]
Average Nusselt Number with Reynolds Number

\begin{equation}
\varepsilon = 1:4
\end{equation}
Average Nusselt Number with Axis Ratio

\[UWF \quad Pr = 0.71 \]

\[
\begin{align*}
\text{Present Model} & \quad \text{Ota et al. (1984)} \\
\text{Present Model} & \quad \text{Ota et al. (1984)} \\
\end{align*}
\]

\[
\begin{align*}
\text{Re}_L & = 10000 \\
\text{Re}_L & = 40000 \\
\end{align*}
\]

\[
\begin{align*}
\text{UWF} \\
\text{Pr} & = 0.71 \\
\end{align*}
\]
Approximate analytical method gives:

- One model for drag coefficient
- Two models for heat transfer coefficient

These models can be used for:

- Laminar range ($40 \leq \text{Re}_D \leq 10^5$)
- Large Prandtl numbers ($\text{Pr} \geq 0.71$)
- Any axis ratio ($0 \leq \epsilon \leq 1$)
Acknowledgment

The authors gratefully acknowledge the financial support of

- Natural Sciences and Engineering Research Council of Canada
- Centre for Microelectronics Assembly and Packaging