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Presentation Outline <MHTL

e Review of

e Progress re

project goals and deliverables

DOItS:

e Optimization models for air cooled heat sinks

e Impact of
resistance

surface conditions on thermal joint
with TIMSs

 Plan for project completion
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Motivation MHTL

e Current trend in industry of applying air cooling as long as
possible — rapidly approaching the limits of air cooling

» 2005 power dissipation projections:
e 100 W for office systems
o 250 W for large systems

« Alternatives to air cooling:
 Liquid cooling
» Refrigeration
e Thermoelectric coolers

« Significant cost, time
required to implement

Am, May 2004
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Air Cooling Limits Qi

 Air cooling limit = when fan-driven convection is insufficient
to maintain temperature levels necessary for reliable operation

* Previous air cooling limits often based on system-wide air
temperature rise, 1.e. Telcordia specs

 Air cooling limit for particular component / location /
application function of:
« Available space and airflow
» Heat sink geometry and materials

 Quality of thermal contact between heat sink and package
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Project Descriptions Qi

o Extend knowledge base for air cooling limits through
two part research study

e Predict air cooling limits

« Develop and validate tools to predict air cooling limits for
specific component / location / application

e Extend air cooling limits

« Optimize surface roughness of contacting surfaces with
thermal interface materials (T1Ms) to minimize thermal
contact resistance
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‘ MHTL

Optimization Models for Air Cooled
Heat Sinks in VVariable By-pass
Conditions
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Objective v

o Use entropy generation minimization (EGM)
technique to develop analysis tools for
predicting air cooling limits as function of:

e Conduction heat transfer
« Spreading resistance
e Thermal joint resistance

e Forced convection heat transfer
« Plate fin, folded fin, pin fin heat sinks

 Hydrodynamic behaviour
 Pressure drop, side and top by-pass
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Model Development Qi

« EGM model developed based on available sub-models:
o Spreading resistance

e Thermal joint resistance
* TIMs (Savija, 2002; Smith, 2004; Banik, 2005)

e Forced convection heat transfer for shrouded heat sinks
 Plate fins (Teertstra et al, 2000)
 Pin fins (Khan, 2004)

 Flow bypass models
 Plate fins, top by-pass only (Leonard, 2002)
 No analytical models available to predict top and side
by-pass for plate fin, pin fin heat sinks
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Methodology Qi

« Analytical modelling of by-pass is complex problem

» Behaves as both flow between parallel plates (internal) and flow over a
plate (external)

* Many independent variables required to describe geometry

* Preliminary experimental measurements
» Aid in understanding the physics of the problem
 |dentify key parameters, simplifying assumptions, physical relationships
» Leads to development of more effective analytical model
« Validation

o Experimental measurements performed in two parts:

» By-pass measurements - pressure drop and local velocity for heat sinks
with variable top and side bypass.

 Thermal measurements — validation data for EGM model
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By-pass Measurements MHTL

» Test section with movable top and side walls
 Pitot tubes, differential pressure transducer for velocity measurement
» Labview / Keithley DAQ system for data management
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By-pass Measurements <MHTL

e Heat sink geometry
« Width (B): 4”

Length (L): 4”

Height (H): 2”

Fin spacing (s): 1/8”

Fin thickness (t): 1/8”

No of fin (n): 16

* Duct Bypass
 Side bypass (CB): 4”7 (2+2™)
e Top bypass (CH): 2”
 Ratio of Bypass CB:B=1; CH:H=1
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Flow Network Model ‘MHTL

» Static pressure measured for

a2 e - 4000 < Re,, < 30000.
2 o Q0 « Total flow rate Q from integration

of pitot tube measurements

o o5  Flowrate through heat sink
Qheatsink: Qtotal - (Q1+Q2+Q4+Q5+Q6)
where Q,,, from orifice plate
— / Honeycomb — Honeycomb% [ Fan
1 - B :
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Drag Coefficient (C,) <MHTL
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Velocity Coefficient (C,)  unn
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Future Work ‘MHTL

e Experimental

e By-pass measurements

e Bypass: CB/B=.75, .5,0 CH/H=.75, 5,0

» Heat sink geometry: s = 1/16”- 1/8”; t = 1/16”
e Heat transfer measurements

* Wind tunnel testing of forced convection for different heat sink
geometries with variety of bypass conditions

 Validation data for analytical models

 Analytical modelling
e By-pass modelling for heat sinks

 Incorporate by-pass, spreading and contact resistance models
Into EGM analysis
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‘ MHTL

Study of Contact Resistance for Flycut
Aluminum 2024 Surfaces
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Objectives v

Experimental study of thermal contact resistance

for face-milled (flycut) aluminum 2024 joints

Microscopic study of surface parameters

e Surface roughness

 Mean asperity slope

o Asperity height distribution

e Micro hardness

Experimental measurements of thermal contact
resistance for a wide range of loads

« Comparison with existing conforming rough
surface contact models
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Motivation ‘MHTL

Heat Sink

Heat Sink

Heat Sink

oo L TEBLET

 Typical contact between heat sink and component with TIM

compound
o TIM fills voids, air gaps
» Bondline thickness (BLT) supports load, prevents direct surface contact

e Maximize contact conductance by minimizing BLT, leading to
direct surface contact

« Analytical models of contact resistance problem for
conforming rough surfaces with TIM compounds
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Motivation ‘MHTL

o Experimental measurements for conforming rough
surfaces with TIM compounds:
« Total joint resistance R;
e In-situ BLT thickness

e |If surfaces are in contact the bulk resistance of the

TIM determined by reducing contact resistance
from total joint resistance

1.1 1 z — BLT

Rb Rj Rc kTIM Aa
* Need to determine R, experimentally, analytically
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d(z/a)

Asperity Heights Distribution ‘MHTL

« Gaussian distribution of asperity heights is a common
assumption made in contact resistance models

« As feed rate increases, surface roughness increases and height
distribution no longer Gaussian
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Micro Hardness of Surfaces
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MHTL
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TIM Test Apparatus
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TIM Test Apparatus Schematic

MHTL
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Contact Resistance Test Results ‘MHTL
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Comparison with Existing Model ‘MHTL

e Modified CMY model:
(Cooper, Mikic,
Yovanovich, 1969)
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h :1.25—ks(—j
o Hc
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Future Work ‘MHTL

e Laser-scan micrometer to measure BLT

Y

e Thermal joint resistance, bulk resistance and thermal
conductivity measurements for variety of TIM compounds

 Analysis of optimum surface roughness as function of BLT,
TIM properties, load, etc.
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