Extending the Limits of Air Cooling for Microelectronic Systems

CMAP Year 1 Project Review

J. Richard Culham, Pete Teertstra
Rakib Hossain, Ashim Banik
Microelectronics Heat Transfer Laboratory
Department of Mechanical Engineering
University of Waterloo
Presentation Outline

- Review of project goals and deliverables
- Progress reports:
 - Optimization models for air cooled heat sinks
 - Impact of surface conditions on thermal joint resistance with TIMs
- Plan for project completion
Motivation

• Current trend in industry of applying air cooling as long as possible – rapidly approaching the limits of air cooling

• 2005 power dissipation projections:
 • 100 W for office systems
 • 250 W for large systems

• Alternatives to air cooling:
 • Liquid cooling
 • Refrigeration
 • Thermoelectric coolers
 • Significant cost, time required to implement

Air Cooling Limits

- Air cooling limit = when fan-driven convection is insufficient to maintain temperature levels necessary for reliable operation
- Previous air cooling limits often based on system-wide air temperature rise, i.e. Telcordia specs
- Air cooling limit for particular component / location / application function of:
 - Available space and airflow
 - Heat sink geometry and materials
 - Quality of thermal contact between heat sink and package
Project Descriptions

- Extend knowledge base for air cooling limits through two part research study
- Predict air cooling limits
 - Develop and validate tools to predict air cooling limits for specific component / location / application
- Extend air cooling limits
 - Optimize surface roughness of contacting surfaces with thermal interface materials (TIMs) to minimize thermal contact resistance
Optimization Models for Air Cooled Heat Sinks in Variable By-pass Conditions
Objective

- Use entropy generation minimization (EGM) technique to develop analysis tools for predicting air cooling limits as a function of:
 - Conduction heat transfer
 - Spreading resistance
 - Thermal joint resistance
 - Forced convection heat transfer
 - Plate fin, folded fin, pin fin heat sinks
 - Hydrodynamic behaviour
 - Pressure drop, side and top by-pass
Model Development

- EGM model developed based on available sub-models:
 - Spreading resistance
 - Thermal joint resistance
 - TIMs (Savija, 2002; Smith, 2004; Banik, 2005)
 - Forced convection heat transfer for shrouded heat sinks
 - Plate fins (Teertstra et al, 2000)
 - Pin fins (Khan, 2004)
 - Flow bypass models
 - Plate fins, top by-pass only (Leonard, 2002)

- No analytical models available to predict top and side by-pass for plate fin, pin fin heat sinks
Methodology

- Analytical modelling of by-pass is complex problem
 - Behaves as both flow between parallel plates (internal) and flow over a plate (external)
 - Many independent variables required to describe geometry
- Preliminary experimental measurements
 - Aid in understanding the physics of the problem
 - Identify key parameters, simplifying assumptions, physical relationships
 - Leads to development of more effective analytical model
 - Validation
- Experimental measurements performed in two parts:
 - By-pass measurements - pressure drop and local velocity for heat sinks with variable top and side bypass.
 - Thermal measurements – validation data for EGM model
By-pass Measurements

- 150 cfm airflow test chamber
- Test section with movable top and side walls
- Pitot tubes, differential pressure transducer for velocity measurement
- Labview / Keithley DAQ system for data management
By-pass Measurements

- Heat sink geometry
 - Width (B): 4”
 - Length (L): 4”
 - Height (H): 2”
 - Fin spacing (s): 1/8”
 - Fin thickness (t): 1/8”
 - No of fin (n): 16

- Duct Bypass
 - Side bypass (CB): 4” (2+2”)
 - Top bypass (CH): 2”
 - Ratio of Bypass CB:B=1; CH:H=1
Flow Network Model

- Static pressure measured for $4000 < \text{Re}_{Dh} < 30000$.
- Total flow rate Q from integration of pitot tube measurements.
- Flowrate through heat sink
 \[Q_{\text{heatsink}} = Q_{\text{total}} - (Q_1 + Q_2 + Q_4 + Q_5 + Q_6) \]
 where Q_{total} from orifice plate.

\[\Delta P_1 \quad \Delta P_2 \quad \Delta P_4 \quad \Delta P_5 \quad \Delta P_6 \]

\[Q_1 \quad Q_2 \quad Q_4 \quad Q_5 \quad Q_6 \]

\[\Delta P_{\text{heatsink}} \]

\[\Delta P_{\text{heatsink}} \]

Honeycomb → Honeycomb → Orifice → Fan
Drag Coefficient (C_d)

\[C_d = \frac{\Delta P}{(1/2 \rho V_{app}^2)} \]
Velocity Coefficient \((C_v)\)
Future Work

- **Experimental**
 - By-pass measurements
 - Bypass: CB/B = .75, .5, 0 CH/H = .75, .5, 0
 - Heat sink geometry: s = 1/16”- 1/8”; t = 1/16”
 - Heat transfer measurements
 - Wind tunnel testing of forced convection for different heat sink geometries with variety of bypass conditions
 - Validation data for analytical models

- **Analytical modelling**
 - By-pass modelling for heat sinks
 - Incorporate by-pass, spreading and contact resistance models into EGM analysis
Study of Contact Resistance for Flycut Aluminum 2024 Surfaces
Objectives

- Experimental study of thermal contact resistance for face-milled (flycut) aluminum 2024 joints
 - Microscopic study of surface parameters
 - Surface roughness
 - Mean asperity slope
 - Asperity height distribution
 - Micro hardness
 - Experimental measurements of thermal contact resistance for a wide range of loads
- Comparison with existing conforming rough surface contact models
Motivation

- Typical contact between heat sink and component with TIM compound
 - TIM fills voids, air gaps
 - Bondline thickness (BLT) supports load, prevents direct surface contact
- Maximize contact conductance by minimizing BLT, leading to direct surface contact
- Analytical models of contact resistance problem for conforming rough surfaces with TIM compounds
Motivation

• Experimental measurements for conforming rough surfaces with TIM compounds:
 • Total joint resistance R_j
 • In-situ BLT thickness
• If surfaces are in contact the bulk resistance of the TIM determined by reducing contact resistance from total joint resistance

$$\frac{1}{R_b} = \frac{1}{R_j} - \frac{1}{R_c}$$

$$R_b = \frac{BLT}{k_{TIM} A_a}$$

• Need to determine R_c experimentally, analytically
Surface Analysis: SEM

Feed rate 12mm/min, Magnification 20X
Feed rate 75mm/min, Magnification 20X

Feed rate 12mm/min, Magnification 50X
Feed rate 75mm/min, Magnification 50X
Asperity Heights Distribution

- Gaussian distribution of asperity heights is a common assumption made in contact resistance models
- As feed rate increases, surface roughness increases and height distribution no longer Gaussian
Vicker’s Microhardness Testing

Vickers Micro-Hardness of Al2024 Ground and Polished Surface

\[H_v = 1.5269d_v^{0.0074} \]

Indentation Diagonal, \(d_v (\text{mm}) \)

Vickers Micro-Hardness, \(H_v (\text{GPa}) \)
TIM Test Apparatus
TIM Test Apparatus Schematic

- Linear Electric Actuator to apply load
- Load Cell
- Spring
- Heat Out
- Measure \(\Delta T / \Delta x \) with RTDs
- Heat In
- Vacuum Bell Jar
- Keithly 2700 D.A. system
- Position Sensing Detectors
- 635 nm Diode Lasers
- Keithly 2700 D.A. system
- TIM Test Apparatus Schematic
Contact Resistance Test Results

![Graph showing contact resistance test results.](image)

- Flycut 1, $\sigma/m = 14.00$
- Flycut 2, $\sigma/m = 14.66$
- Flycut 3, $\sigma/m = 15.69$
- Flycut 4, $\sigma/m = 18.59$
- Flycut 5, $\sigma/m = 20.67$

Best Fit (Power)
Comparison with Existing Model

- Modified CMY model: (Cooper, Mikic, Yovanovich, 1969)

\[h_c = 1.25 \frac{m}{\sigma} k_s \left(\frac{P}{Hc} \right)^{0.95} \]

- 22% RMS difference
Future Work

- Laser-scan micrometer to measure BLT
- Thermal joint resistance, bulk resistance and thermal conductivity measurements for variety of TIM compounds
- Analysis of optimum surface roughness as function of BLT, TIM properties, load, etc.