

Overview of Research Experience and Capabilities

J. R. Culham and P. Teertstra

Microelectronics Heat Transfer Laboratory Department of Mechanical Engineering University of Waterloo Waterloo, Ontario N2L 3G1

March 13, 2003

- Background
- Capabilities
- Facilities
- Research Projects
- Modeling Tools

- established in 1984 within the Department of Mechanical Engineering at the University of Waterloo
- research and development related to heat transfer and other thermodynamic phenomena
- fully funded through industrial and governmental grants and contracts
- staff includes:
 - > 1 faculty member + 1 retired faculty member
 - > 2 research engineers
 - > 4 graduate students
 - > 1 post doctoral fellow
 - ➤ 1 technician

Modeling Capabilities

- conjugate heat transfer for microelectronics
- convection and conduction from bodies of arbitrary shape
- thermal contact resistance
- thermal spreading resistance
- fluid flow and heat transfer for heat exchangers and cold plates

- conjugate heat transfer for packages & boards
- air and liquid cooled heat sink performance
- thermal contact & spreading resistance
- thermal conductivity measurements
- testing of thermal interface materials
- surface characterization
- radiation heat transfer

Facilities

- wind tunnel
- heat exchanger test rig
- contact resistance test rig
- thermal interface material test rig
- surface analysis
- computing equipment

- 18" open circuit wind tunnel
- adaptable test section
- airflow up to 15 m/s

March 13, 2003

Heat Exchanger Test Rig

March 13, 2003

- flow rates up to 3 gpm
- power input up to 3 kW
- water, glycol, other fluids

CMAP Workshop on Thermal Issues

Contact Resistance Rig

Working Ranges

	Minimum	Maximum
Interface Temperature	-20 °C	400 °C
Environment Pressure	10^{-10} atm	1 atm
Load	50 N	5000 N
Interface Pressure	0.4 MPa	10 MPa
Working Fluids	Air Argon Helium Nitrogen	

Thermal Interface Materials

March 13, 2003

load cell

- ✓ 100 or 1000 lbs
- linear actuator
 - digitally controlled stepper motor
 - 400 steps / rev0.1 inch per revolution
- laser-based thickness measurement:
 - ✓ 1 micron precsion

Surface Characterization

➤ Talysurf 5 surface profilometer

- surface roughness, wavines and profile for flat or circular surfaces
- calculates RMS roughness & RMS surface slope
- ➤ Taylor Hobson Surtronic 3+
 - portable surface profilometer
 - resolution $0.01 \ \mu m \rightarrow 300 \ \mu m$ March 13, 2003 CMAP W

Leitz Durimet Microhardness Tester

- indenter loads: 15 2000 g
- sample temperatures: up to 200 °C

Hardware:

- ➤ SUN SunBlade 1000 dual processor UltraSparc
- ≻ SUN SunBlade 2000 dual processor UltraSparc III (2003)
- ➤ SGI Octane dual processor R10000 workstation
- > 14 networked PC's

Software:

- ➤ Numerical CFD Simulation: Flotherm, Ideas, Icepack
- ➤ Symbolic Mathematics: Mathematica, Maple, Matlab
- Code Development: Visual Basic, C++, CGI, Java, Javascript

March 13, 2003

Research Projects

- natural convection in microelectronic enclosures
- analytical modeling of heat sinks
 - \succ flow by-pass
 - \succ design optimization
- modeling of liquid cooled cold plates
- contact & spreading resistance models
 - ➤ non-conforming, rough surfaces
 - \succ sources on compound disks and flux channels
- characterization of thermal interface materials
- virtual reality modeling of heating/ventilation in car seats

Natural Convection in Enclosures

Objectives

Overview

• combine conduction and laminar natural convection limiting cases using composite

solution technique

• simple model formulation can include radiation and

conduction effects

•develop analytical models for steady-state natural convection from a heated body to its surrounding, cooled enclosure

March 13, 2003

Heat Sinks: Optimization Routines

Objectives

- develop thermal simulation tools that optimize heat sink design variables based on the minimization of entropy generation
- establish a thermodynamic balance between heat transfer, viscous dissipation and mass transport

- entropy production ∝ amount of energy degraded to a form unavailable for work
- lost work is an additional amount of heat that could have been extracted
- minimizing the production of entropy provides a concurrent optimization of all design variables

March 13, 2003

Modelling of Heat Exchangers & Cold Plates

Overview

Objectives

- develop analytical models for predicting the heat transfer and fluid friction characteristics of heat exchangers and cold plates
- general models for predicting friction factors and Nusselt numbers for fully developed, thermally developing, and simultaneously developing flow in non-circular ducts.
- models are developed by combining the asymptotic behavior for various flow regions.

March 13, 2003 CMAP Workshop on Thermal Issues

Thermal Contact Resistance: Non-Conforming, Rough Surfaces

Objectives

Overview

• develop thermo-mechanical models for predicting contact resistance in real surfaces with microscopic roughness and waviness

of plastic deformation at the microscopic level with elastic deformation at the macroscopic level

• mechanical models combine the effects

Apparent contact area

Micro-contacts

CMAP Workshop on Thermal Issues

area

March 13, 2003

Objectives

• develop a simple model for determining thermal joint resistance with grease filled interstitial gaps

a) Two Nominally Flat Rough Surfaces

b) Equivalent Rough Surface, Smooth Plane Contact

c) Equivalent Uniform Gap Model

CMAP Workshop on Thermal Issues

Overview

• combine joint conductance models with a bulk resistance model for grease, based on an equivalent layer thickness

March 13, 2003

Heating and Ventilation in Car Seats

Objectives

- develop thermofluid models for simulating heating and cooling of car seats
- develop a human interaction model to assess the ergonomic

response between the human and the seat

Overview

- a 21 segment model of a human is developed to determine the response to rapid chances in temperature
- models must be fast and accurate in order to provide near real time simulation as part of a virtual reality model

March 13, 2003

- URL for the MHTL Web page http://www.mhtlab.uwaterloo.ca
- tool set includes:
 - \succ natural convection in heat sinks: radial fins, plate fins
 - ➤ spreading resistance:
 - circular source on a compound disk, flux tube or half space
 - rectangular source on a rectangular disk, flux tube or half space
 - ► PCB thermal simulation
 - > thermophysical property calculator
 - \succ special function calculator

March 13, 2003 CMAP Workshop on Thermal Issues

Contact Information

- Web page: http://www.mhtlab.uwaterloo.ca
- Email: R. Culham: rix@mhtlab.uwaterloo.ca
 P. Teertstra: pmt@mhtlab.uwaterloo.ca
- Phone: (519) 888-4586
 Fax: (519) 746-9141
- Address: Microelectronics Heat Transfer Laboratory Department of Mechanical Engineering University of Waterloo Waterloo, Ontario, Canada N2L 3G1