Overview of Research
Experience and Capabilities

J. R. Culham and P. Teertstra

Microelectronics Heat Transfer Laboratory
Department of Mechanical Engineering
University of Waterloo
Waterloo, Ontario N2L 3G1

March 13, 2003 CMAP Workshop on Thermal Issues
Outline

- Background
- Capabilities
- Facilities
- Research Projects
- Modeling Tools
Microelectronics Heat Transfer Laboratory

- established in 1984 within the Department of Mechanical Engineering at the University of Waterloo
- research and development related to heat transfer and other thermodynamic phenomena
- fully funded through industrial and governmental grants and contracts
- staff includes:
 - 1 faculty member + 1 retired faculty member
 - 2 research engineers
 - 4 graduate students
 - 1 post doctoral fellow
 - 1 technician
Modeling Capabilities

- conjugate heat transfer for microelectronics
- convection and conduction from bodies of arbitrary shape
- thermal contact resistance
- thermal spreading resistance
- fluid flow and heat transfer for heat exchangers and cold plates
Experimental Capabilities

- conjugate heat transfer for packages & boards
- air and liquid cooled heat sink performance
- thermal contact & spreading resistance
- thermal conductivity measurements
- testing of thermal interface materials
- surface characterization
- radiation heat transfer
Facilities

- wind tunnel
- heat exchanger test rig
- contact resistance test rig
- thermal interface material test rig
- surface analysis
- computing equipment
Wind Tunnel

- 18” open circuit wind tunnel
- adaptable test section
- airflow up to 15 m/s
Heat Exchanger Test Rig

- flow rates up to 3 gpm
- power input up to 3 kW
- water, glycol, other fluids
Contact Resistance Rig

Working Ranges

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Temperature</td>
<td>-20 °C</td>
<td>400 °C</td>
</tr>
<tr>
<td>Environment Pressure</td>
<td>10^{-10} atm</td>
<td>1 atm</td>
</tr>
<tr>
<td>Load</td>
<td>50 N</td>
<td>5000 N</td>
</tr>
<tr>
<td>Interface Pressure</td>
<td>0.4 MPa</td>
<td>10 MPa</td>
</tr>
<tr>
<td>Working Fluids</td>
<td>Air</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Argon</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Helium</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nitrogen</td>
<td></td>
</tr>
</tbody>
</table>
Thermal Interface Materials

- load cell
 - 100 or 1000 lbs
- linear actuator
 - digitally controlled stepper motor
 - 400 steps / rev
 - 0.1 inch per revolution
- laser-based thickness measurement:
 - 1 micron precision
Surface Characterization

➢ Leitz Durimet Microhardness Tester
 • indenter loads: 15 - 2000 g
 • sample temperatures: up to 200 °C

➢ Talysurf 5 surface profilometer
 • surface roughness, wavines and profile for flat or circular surfaces
 • calculates RMS roughness & RMS surface slope

➢ Taylor Hobson Surtronic 3+
 • portable surface profilometer
 • resolution $0.01 \mu m \rightarrow 300 \mu m$

March 13, 2003 CMAP Workshop on Thermal Issues
Computing Facilities

- **Hardware:**
 - SUN SunBlade 1000 dual processor UltraSparc
 - SGI Octane dual processor R10000 workstation
 - 14 networked PC’s

- **Software:**
 - Numerical CFD Simulation: Flotherm, Ideas, Icepack
 - Symbolic Mathematics: Mathematica, Maple, Matlab
 - Code Development: Visual Basic, C++, CGI, Java, Javascript
Research Projects

- natural convection in microelectronic enclosures
- analytical modeling of heat sinks
 - flow by-pass
 - design optimization
- modeling of liquid cooled cold plates
- contact & spreading resistance models
 - non-conforming, rough surfaces
 - sources on compound disks and flux channels
- characterization of thermal interface materials
- virtual reality modeling of heating/ventilation in car seats

March 13, 2003 CMAP Workshop on Thermal Issues
Natural Convection in Enclosures

Objectives
- develop analytical models for steady-state natural convection from a heated body to its surrounding, cooled enclosure

Overview
- combine conduction and laminar natural convection limiting cases using composite solution technique
- simple model formulation can include radiation and conduction effects

March 13, 2003 CMAP Workshop on Thermal Issues
Heat Sinks: Optimization Routines

Objectives

- develop thermal simulation tools that optimize heat sink design variables based on the minimization of entropy generation
- establish a thermodynamic balance between heat transfer, viscous dissipation and mass transport

Overview

- entropy production \(\propto \) amount of energy degraded to a form unavailable for work
- lost work is an additional amount of heat that could have been extracted
- minimizing the production of entropy provides a concurrent optimization of all design variables
Modelling of Heat Exchangers & Cold Plates

Objectives

- develop analytical models for predicting the heat transfer and fluid friction characteristics of heat exchangers and cold plates

Overview

- general models for predicting friction factors and Nusselt numbers for fully developed, thermally developing, and simultaneously developing flow in non-circular ducts.
- models are developed by combining the asymptotic behavior for various flow regions.

March 13, 2003
CMAP Workshop on Thermal Issues
Thermal Contact Resistance: Non-Conforming, Rough Surfaces

Objectives

- develop thermo-mechanical models for predicting contact resistance in real surfaces with microscopic roughness and waviness

Overview

- mechanical models combine the effects of plastic deformation at the microscopic level with elastic deformation at the macroscopic level
Objectives

- develop a simple model for determining thermal joint resistance with grease filled interstitial gaps

Overview

- combine joint conductance models with a bulk resistance model for grease, based on an equivalent layer thickness
Objectives

- develop thermofluid models for simulating heating and cooling of car seats
- develop a human interaction model to assess the ergonomic response between the human and the seat

Overview

- a 21 segment model of a human is developed to determine the response to rapid changes in temperature
- models must be fast and accurate in order to provide near real time simulation as part of a virtual reality model
Design Tools

- URL for the MHTL Web page

 http://www.mhtlab.uwaterloo.ca

- tool set includes:

 ➢ natural convection in heat sinks: radial fins, plate fins

 ➢ spreading resistance:
 • circular source on a compound disk, flux tube or half space
 • rectangular source on a rectangular disk, flux tube or half space

 ➢ PCB thermal simulation

 ➢ thermophysical property calculator

 ➢ special function calculator
Value: provide specific values for constrained parameters

Optimize: indicate parameters to be optimized

Calculate: run optimization code to calculate design parameters for maximum thermal-fluid performance
Contact Information

- Web page: http://www.mhtlab.uwaterloo.ca
- Email: R. Culham: rix@mhtlab.uwaterloo.ca
 P. Teertstra: pmt@mhtlab.uwaterloo.ca
- Phone: (519) 888-4586
 Fax: (519) 746-9141
- Address: Microelectronics Heat Transfer Laboratory
 Department of Mechanical Engineering
 University of Waterloo
 Waterloo, Ontario, Canada N2L 3G1