Development of Conduction, Convection, Spreading and Contact Resistance Models for Microelectronics Applications

J. R. Culham, M.M. Yovanovich and P. Teertstra

Microelectronics Heat Transfer Laboratory
Department of Mechanical Engineering
University of Waterloo
Waterloo, Ontario N2L 3G1
Outline

- Project Overview
- Objectives
- Year 1 Deliverables
- Design & Analysis Tools
- Personnel
- What Lies Ahead
- Concluding Comments
Project Strategy

Heat sink conduction and convection
joint resistance at heat sink attach
spreading resistance at heat sink attach
spreading / constriction resistance in package substrate and interconnects
spreading resistance in board
board conduction and convection

T_∞ R_{hs} R_j R_s Q T_j R_s R_s R_b T_∞

Section 1 Section 2 Section 3 Section 4
Objectives

- Thermal model development: chip level → cooling medium
 - heat sink optimization
 - modeling & characterization of thermal interfaces
 - modeling of spreading & constriction resistance
 - modeling of conduction & convection in PWBs
Year 1 Deliverables

- Heat sink optimization model
 - shrouded, air-cooled, plate fin heat sink
 - interactive web-based modeling tool

- Thermal resistance models
 - non-conforming, smooth surfaces
 - conforming rough surfaces
 - Excel spreadsheet models
Year 1 Deliverables

- Spreading resistance model for
 - multiple discrete sources
 - isotropic or multi-layered substrate
 - interactive web-based modeling tool

- Thermal Interface Test Rig
 - design, build and commission test apparatus
Heat Sink Optimization

Analysis Tool vs. **Design Tool**

- design is known a priori
- used to calculate the performance of a given design, i.e. Nu or R vs. Re
- cannot guarantee an optimized design

- used to obtain an optimized design for a set of known constraints i.e. given:
 - maximum temperature
 - heat input
 - maximum outside dimensions

find: the most efficient design
Why use Entropy Generation Minimization?

- entropy production \propto amount of energy degraded to a form unavailable for work
- lost work is an additional amount of heat that could have been extracted
- degradation process is a function of thermodynamic irreversibilities e.g. friction, heat transfer etc.
- minimizing the production of entropy, provides a simultaneous optimization of all design variables
Value: provide specific values for constrained parameters

Optimize: indicate parameters to be optimized

Calculate: run optimization code to calculate design parameters for maximum thermal-fluid performance

Web URL: http://mhtlab.uwaterloo.ca/onlinetools/optimize/index.html
Contact Resistance Models

- Non-conforming, smooth surfaces:
 - assume material waviness (out-of-flatness) predominates
 - microscopic roughness is negligible
 - example: heat sink on a silicon chip
 - determine contact, gap and joint resistance

- Conforming rough surfaces:
 - assume microscopic roughness predominates
 - out-of-flatness is negligible
 - example: two machined (lapped or ground) surfaces
 - determine contact, gap and joint resistance
Non-Conforming Smooth Surfaces
Spreading Resistance Model

- Analytical solution for heat sources on a rectangular flux channel
 - isotropic or laminated substrates
 - multiple discrete sources

- Model details in:

Spreading Resistance of Multiple Sources on Rectangular Substrate

Instructions: user’s guide & sample problem
Background: governing eqns. & model development
Input/Output: data entry & units
References: publications & sample pdf files

Properties: set substrate & source properties
Add/move, Edit, Delete, New, Copy: on screen package placement

Note: Java source requires Netscape (IE will not work)

Web URL: http://mhtlab.uwaterloo.ca/onlinetools/multisource/index.html

October 17, 2001
Add a new source: a pop-up window will appear for entering heat source inputs - click on substrate to place current heat source.
Mean source temperature rise - \(^\circ\text{C} \)

Calculate: click calculate to obtain mean heat source temperature rise for each source
- Java-based code will be executed on local CPU
- typical run times are approximately 10 seconds per source
Thermal Interface Materials

- Design, build & commission test apparatus & data acquisition interface for testing interface materials:
 - Measure joint resistance and thermal conductivity as function of:
 - interface temperature
 - contact pressure
 - material properties
 - surface characteristics
 - in-situ thickness measurement: sub micron precision
Testing Capabilities

- 4 categories of materials can be tested
 - materials requiring stops & minimal clamping force
 - grease, liquids, phase change
 - materials deforming more than 10% under clamping force - compliant materials
 - materials deforming less than 10%, no stops required - hard rubber
 - thermally conductive materials requiring high clamping force - ceramics & plastics
Apparatus

- **Load cell**
 - 100 or 1000 lbs

- **Spring**
 - To compensate for thermal expansion

- **Thrust bearing**
 - To remove torque loads

- **Electric cylinder**
 - Digitally controlled stepper motor
 - 400 steps / rev 0.1” per revolution
Thermal Interface Test Apparatus
Thermal Interface Test Apparatus
Thickness and Deflection

- Detector, Lower Block
- Detector, Upper Block
- Laser, Lower Block
- Laser, Upper Block
- Translation Stage

October 17, 2001

CMAP 1st Annual Project Review
University of Waterloo
HQP’s

- Graduate Students
 - Mr. Majid Bahrami
 - Ph.D candidate - *topic*: contact resistance in non-conforming rough surfaces
 - Ms. Irena Savija
 - M.A.Sc. Candidate - *topic*: modeling and characterization of thermal interface materials

- Summer Students
 - Mr. Joel Reardon and Mr. Chris Hurley
 - Web tool model development: Java, C, Javascript, CGI

- Senior Undergraduate Projects
 - Dana Frigula and Matthew Morrissey
 - Laser measurement system
What Lies Ahead

- Heat sink models for base plate enhancements such as copper inserts, laminates and heat pipes
- Heat sink flow by-pass models
- Joint resistance models for non-conforming rough surfaces
- Thermal interface models: grease, phase change materials and compliant polymers
- Board level modeling
Concluding Comments

- Thank you to sponsoring companies:
 - Alcatel
 - Celestica
 - Dy4
 - Coretec

- Cross our fingers for a successful CFI bid in the new year