COMPACT ANALYTICAL MODELS FOR EFFECTIVE THERMAL CONDUCTIVITY OF ROUGH SPHEROID PACKED BEDS

Majid Bahrami
M. M. Yovanovich
J. R. Culham

Microelectronics Heat Transfer Laboratory
Department of Mechanical Engineering
University of Waterloo
Ontario, Canada
OVERVIEW

• Introduction

• Motivations and Objectives

• Conduction Through Contact Spots

• Conduction Through Interstitial Gas

• Present Model

• Comparison with Experimental Data

• Conclusions
INTRODUCTION

• high ratio of solid surface area to volume.

• packed beds applications:
 – Catalytic reactors, heat recovery systems, heat exchangers, heat storage systems, and insulators

• regular packing: Simple Cubic (SC), Body Center Close (BCC), and Face Center Close (FCC)
MOTIVATIONS AND OBJECTIVES

• existing models can be categorized into:
 – numerical (FEM) models:
 • Buonanno et al.: time consuming, B.C. must be fed into the code for thermal contact resistance
 – analytical models:
 • Slavin et al.: a point contact between spheres assumed
 • Ogniewicz & Yovanovich and Turyk & Yovanovich: limited to smooth spheres

• develop compact models for determining effective thermal conductivity that account for:
 – roughness
 – gas rarefaction effect
 – contact load
 – gas temperature and pressure
REGULAR PACKED BED ARRANGEMENTS

- solid fraction is defined

\[\varepsilon = \frac{V_s}{V} \]

<table>
<thead>
<tr>
<th>Packing</th>
<th>Solid fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC</td>
<td>0.524</td>
</tr>
<tr>
<td>BCC</td>
<td>0.680</td>
</tr>
<tr>
<td>FCC</td>
<td>0.740</td>
</tr>
</tbody>
</table>

Simple Packing (SP) \(\varepsilon = 0.524 \)

Body Center Close (BCC) \(\varepsilon = 0.680 \)

Face Center Close (FCC) \(\varepsilon = 0.740 \)
HEAT TRANSFER MECHANISMS IN PACKED BEDS

two main paths for transferring thermal energy in packed beds are:

• conduction through microcontacts
• heat transfer through interstitial gas
thermal joint resistance network components:

- macro-constriction, R_L
- micro-constriction, R_s
- microgap resistance, R_g
- macrogap, R_G

$$R_j = \left[\frac{1}{\left(\frac{1}{R_s} + \frac{1}{R_g} \right)^{-1} + \frac{1}{R_L \cdot R_G}} \right]^{-1}$$
CONDUCTION THROUGH CONTACT SPOTS

• macro-constriction resistance, \(R \), Bahrami et al. [17]

\[
P(\xi) = P_0 \left(1 - \xi^2\right)^y
\]

\[
P'_0 = \frac{P_0}{P_{0,H}} = \frac{1}{1 + 1.37 \alpha \tau^{-0.075}}
\]

\[
\alpha = \frac{\sigma \rho}{a_H^2} \text{ and } \tau = \frac{\rho}{a_H}
\]

\[
a'_L = \begin{cases}
1.605 / \sqrt{P'_0} & 0.01 \leq P'_0 \leq 0.47 \\
3.51 - 2.51 P'_0 & 0.47 \leq P'_0 \leq 1
\end{cases}
\]

\[
R_L = \frac{1}{2k_s a_L}
\]

• micro-constriction resistance, \(R_s \), Bahrami et al. [14]

\[
R_s = \frac{0.565 H^* (\sigma / m)}{k_s F}
\]
Conduction regimes in a gas layer between two parallel plates:
- continuum
- temperature-jump or slip
- transition
- free-molecular

Microgap resistance, R_g, Bahrami et al. [26]

$$R_g = \frac{\sqrt{2} \sigma a_2}{\pi k_g a_L^2 \ln \left(1 + \frac{a_2}{a_1 + M / \sqrt{2} \sigma} \right)}$$

$a_1 = \text{erf}^{-1} \left(\frac{2 P_0}{H'} \right)$ and $a_2 = \text{erf}^{-1} \left(\frac{0.03 P_0}{H'} \right) - a_1$

Macrogap resistance, R_G, Bahrami et al. [25]

$$2\pi k_g R_G = \frac{1}{S \ln \left(\frac{S - B}{S - A} \right) + B - A}$$

$A = \sqrt{\rho^2 - a_L^2}$, $B = \sqrt{\rho^2 - b_L^2}$, $S = \rho - \omega_0 + M$
CONDUCTION IN BASIC CELLS

steps to determine the bed conductivity:

• calculate the relation between the apparent load and contact load
• break up the unit cell into contact regions
• calculate the thermal joint resistance of a contact region
• determine the effective conductivity

\[k_c = \frac{L_c}{R_c A_c} \]
Kitscha and Yovanovich (1974) SC basic cell data

- Carbon steel sphere of radius 12.7 mm
- Flat steel 1020, \(\sigma = 0.13 \, \mu m \), \(b_L = 12.7 \, mm \)
- Air, \(Pr = 0.70 \), \(\gamma_g = 1.4 \), \(\alpha_T = 0.87 \), \(\Lambda_0 = 64 \, nm \)
- \(k_g \) (W/m K) = 0.0021 + 8 \times 10^{-5} T (K)

- Argon, \(Pr = 0.67 \), \(\gamma_g = 1.67 \), \(\alpha_T = 0.90 \), \(\Lambda_0 = 66.6 \, nm \)
- \(k_g \) (W/m K) = 0.0159 + 4 \times 10^{-6} T (K)
COMPARISON WITH EXPERIMENTAL DATA

SC packed bed, Buonanno et al. (2003) data

Buonanno et al. [3] data, SC packing
100Cr6 stainless steel spheres of radius 19.05 mm
\(k_s = 60 \text{ W/mK} \)
\(E_s = 200 \text{ GPa}, \nu_s = 0.3 \)
\(H_{mic} = 8.32 \text{ GPa} \)
air at 1 atm pressure, \(T = 20 ^\circ \text{C} \)
\(k_g = 0.027 \text{ W/mK}, Pr = 0.7, \gamma_g = 1.4 \)
\(\alpha_T \approx 0.78 \)
\(F_c = 0.983 \text{ N} \)

Buonanno et al. [5] data, SC packing
100Cr6 stainless steel spheres of radius 19.05 mm
\(k_s = 60 \text{ W/mK} \)
\(E_s = 200 \text{ GPa}, \nu_s = 0.3 \)
\(H_{mic} = 8.32 \text{ GPa} \)
air at 1 atm pressure, \(T = 20 ^\circ \text{C} \)
\(k_g = 0.027 \text{ W/mK}, Pr = 0.7, \gamma_g = 1.4 \)
\(F_c = 0.983 \text{ N} \)

atmospheric air
SUMMARY AND CONCLUSIONS

- compact models are proposed for determining effective thermal conductivity in regularly packed beds, SC and FCC arrangements

- present model accounts for thermophysical properties of spheres and gas, load, roughness, gas temperature and pressure, and gas rarefaction effects

- the present model is compared against experimental data, both SC and FCC, over a variety of packed bed conditions and good agreement is observed
ACKNOWLEDGMENTS

• Natural Sciences and Engineering Research Council of Canada (NSERC)

• The Center for Microelectronics Assembly and Packaging (CMAP)