10-143 A cylindrical tank filled with liquid propane at 1 atm is exposed to convection and radiation. The time it will take for the propane to evaporate completely as a result of the heat gain from the surroundings for the cases of no insulation and 5-cm thick glass wool insulation are to be determined.

Assumptions 1 Heat transfer is steady. 2 Heat transfer is one-dimensional. 3 The combined heat transfer coefficient is constant and uniform over the entire surface. 4 The temperature of the thin-shelled spherical tank is said to be nearly equal to the temperature of the propane inside, and thus thermal resistance of the tank and the internal convection resistance are negligible.

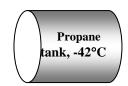
Properties The heat of vaporization and density of liquid propane at 1 atm are given to be 425 kJ/kg and 581 kg/m³, respectively. The thermal conductivity of glass wool insulation is given to be k = 0.038 W/m·°C.

Analysis (a) If the tank is not insulated, the heat transfer rate is determined to be

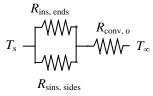
$$A_{\text{tank}} = \pi D L + 2\pi (\pi D^2 / 4) = \pi (1.2 \text{ m}) (6 \text{ m}) + 2\pi (1.2 \text{ m})^2 / 4 = 24.88 \text{ m}^2$$

$$\dot{Q} = hA_{\text{tank}} (T_{\infty 1} - T_{\infty 2}) = (25 \text{ W/m}^2. ^{\circ}\text{C})(24.88 \text{ m}^2)[30 - (-42)] ^{\circ}\text{C} = 44,787 \text{ W}$$

The volume of the tank and the mass of the propane are


$$\mathbf{V} = \pi r^2 L = \pi (0.6 \text{ m})^2 (6 \text{ m}) = 6.786 \text{ m}^3$$

 $m = \rho \mathbf{V} = (581 \text{ kg/m}^3)(6.786 \text{ m}^3) = 3942.6 \text{ kg}$


The rate of vaporization of propane is

$$\dot{Q} = \dot{m}h_{fg} \rightarrow \dot{m} = \frac{\dot{Q}}{h_{fg}} = \frac{44.787 \text{ kJ/s}}{425 \text{ kJ/kg}} = 0.1054 \text{ kg/s}$$

Then the time period for the propane tank to empty becomes

$$\Delta t = \frac{m}{\dot{m}} = \frac{3942.6 \text{ kg}}{0.1054 \text{ kg/s}} = 37,413 \text{ s} = 10.4 \text{ hours}$$

(b) We now repeat calculations for the case of insulated tank with 5-cm thick insulation.

$$A_{\rm o} = \pi D L + 2\pi (\pi D^2 / 4) = \pi (1.3 \,\mathrm{m}) (6 \,\mathrm{m}) + 2\pi (1.3 \,\mathrm{m})^2 / 4 = 27.16 \,\mathrm{m}^2$$

$$R_{\rm conv,o} = \frac{1}{h_o A_o} = \frac{1}{(25 \,\mathrm{W/m}^2 \,.^\circ \mathrm{C}) (27.16 \,\mathrm{m}^2)} = 0.001473 \,^\circ \mathrm{C/W}$$

$$R_{\rm insulation,side} = \frac{\ln (r_2 / r_1)}{2\pi k L} = \frac{\ln (65 / 60)}{2\pi (0.038 \,\mathrm{W/m.^\circ C}) (6 \,\mathrm{m})} = 0.05587 \,^\circ \mathrm{C/W}$$

$$R_{\rm insulation,ends} = 2 \frac{L}{k A_{avg}} = \frac{2 \times 0.05 \,\mathrm{m}}{(0.038 \,\mathrm{W/m.^\circ C}) [\pi (1.25 \,\mathrm{m})^2 / 4]} = 2.1444 \,^\circ \mathrm{C/W}$$

Noting that the insulation on the side surface and the end surfaces are in parallel, the equivalent resistance for the insulation is determined to be

$$R_{\text{insulation}} = \left(\frac{1}{R_{\text{insulation,side}}} + \frac{1}{R_{\text{insulation,ends}}}\right)^{-1} = \left(\frac{1}{0.05587 \text{ °C/W}} + \frac{1}{2.1444 \text{ °C/W}}\right)^{-1} = 0.05445 \text{ °C/W}$$

Then the total thermal resistance and the heat transfer rate become

$$R_{\text{total}} = R_{\text{conv,o}} + R_{\text{insulation}} = 0.001473 + 0.05445 = 0.05592 \text{ °C/W}$$

$$\dot{Q} = \frac{T_{\infty} - T_s}{R_{\text{total}}} = \frac{[30 - (-42)] \text{ °C}}{0.05592 \text{ °C/W}} = 1288 \text{ W}$$

Then the time period for the propane tank to empty becomes

$$\dot{Q} = \dot{m}h_{fg} \rightarrow \dot{m} = \frac{\dot{Q}}{h_{fg}} = \frac{1.288 \text{ kJ/s}}{425 \text{ kJ/kg}} = 0.003031 \text{ kg/s}$$

$$\Delta t = \frac{m}{\dot{m}} = \frac{3942.6 \text{ kg}}{0.003031 \text{ kg/s}} = 1.301 \times 10^6 \text{ s} = 361.4 \text{ hours} = 15.1 \text{ days}$$