10-20 A double-pane window consists of two layers of glass separated by a stagnant air space. For specified indoors and outdoors temperatures, the rate of heat loss through the window and the inner surface temperature of the window are to be determined.

Air

Assumptions 1 Heat transfer through the window is steady since the indoor and outdoor temperatures remain constant at the specified values. 2 Heat transfer is one-dimensional since any significant temperature gradients will exist in the direction from the indoors to the outdoors. 3 Thermal conductivities of the glass and air are constant. 4 Heat transfer by radiation is negligible.

Properties The thermal conductivity of the glass and air are given to be $k_{\text{glass}} = 0.78 \text{ W/m} \cdot ^{\circ}\text{C}$ and $k_{\text{air}} = 0.026 \text{ W/m} \cdot ^{\circ}\text{C}$.

Analysis The area of the window and the individual resistances are

ridual resistances are
$$A = (1.2 \text{ m}) \times (2 \text{ m}) = 2.4 \text{ m}^2$$

$$T_{\infty 1} \longrightarrow W \longrightarrow W \longrightarrow W \longrightarrow T_{\infty}$$

$$R_{i} = R_{conv,1} = \frac{1}{h_{1}A} = \frac{1}{(10 \text{ W/m}^{2}.^{\circ}\text{C})(2.4 \text{ m}^{2})} = 0.0417 \,^{\circ}\text{C/W}$$

$$R_{1} = R_{3} = R_{glass} = \frac{L_{1}}{k_{1}A} = \frac{0.003 \text{ m}}{(0.78 \text{ W/m}.^{\circ}\text{C})(2.4 \text{ m}^{2})} = 0.0016 \,^{\circ}\text{C/W}$$

$$R_{2} = R_{air} = \frac{L_{2}}{k_{2}A} = \frac{0.012 \text{ m}}{(0.026 \text{ W/m}.^{\circ}\text{C})(2.4 \text{ m}^{2})} = 0.1923 \,^{\circ}\text{C/W}$$

$$R_{0} = R_{conv,2} = \frac{1}{h_{2}A} = \frac{1}{(25 \text{ W/m}^{2}.^{\circ}\text{C})(2.4 \text{ m}^{2})} = 0.0167 \,^{\circ}\text{C/W}$$

$$R_{total} = R_{conv,1} + 2R_{1} + R_{2} + R_{conv,2} = 0.0417 + 2(0.0016) + 0.1923 + 0.0167 = 0.2539 \,^{\circ}\text{C/W}$$

The steady rate of heat transfer through window glass then becomes

$$\dot{Q} = \frac{T_{\infty 1} - T_{\infty 2}}{R_{\text{cond}}} = \frac{[24 - (-5)]^{\circ}\text{C}}{0.2539^{\circ}\text{C/W}} = 114 \text{ W}$$

The inner surface temperature of the window glass can be determined from

$$\dot{Q} = \frac{T_{\infty 1} - T_1}{R_{conv,1}} \longrightarrow T_1 = T_{\infty 1} - \dot{Q}R_{conv,1} = 24^{\circ} \text{ C} - (114 \text{ W})(0.0417^{\circ}\text{C/W}) = 19.2^{\circ}\text{C}$$