10-54 A wall consists of horizontal bricks separated by plaster layers. There are also plaster layers on each side of the wall, and a rigid foam on the inner side of the wall. The rate of heat transfer through the wall is to be determined.

Assumptions 1 Heat transfer is steady since there is no indication of change with time. **2** Heat transfer through the wall is one-dimensional. **3** Thermal conductivities are constant. **4** Heat transfer by radiation is disregarded.

Properties The thermal conductivities are given to be $k = 0.72 \text{ W/m} \cdot ^{\circ}\text{C}$ for bricks, $k = 0.22 \text{ W/m} \cdot ^{\circ}\text{C}$ for plaster layers, and $k = 0.026 \text{ W/m} \cdot ^{\circ}\text{C}$ for the rigid foam.

Analysis We consider 1 m deep and 0.33 m high portion of wall which is representative of the entire wall. The thermal resistance network and individual resistances are

$$R_{i} = R_{conv,1} = \frac{1}{h_{1}A} = \frac{1}{(10 \text{ W/m}^{2} \cdot ^{\circ}\text{C})(0.33 \times 1 \text{ m}^{2})} = 0.303 \, ^{\circ}\text{C/W}$$

$$R_{1} = R_{foam} = \frac{L}{kA} = \frac{0.02 \text{ m}}{(0.026 \text{ W/m} \cdot ^{\circ}\text{C})(0.33 \times 1 \text{ m}^{2})} = 2.33 \, ^{\circ}\text{C/W}$$

$$R_{2} = R_{6} = R_{plaster} = \frac{L}{kA} = \frac{0.02 \text{ m}}{(0.22 \text{ W/m} \cdot ^{\circ}\text{C})(0.33 \times 1 \text{ m}^{2})} = 0.275 \, ^{\circ}\text{C/W}$$

$$R_{3} = R_{5} = R_{plaster} = \frac{L}{h_{o}A} = \frac{0.18 \text{ m}}{(0.22 \text{ W/m} \cdot ^{\circ}\text{C})(0.015 \times 1 \text{ m}^{2})} = 54.55 \, ^{\circ}\text{C/W}$$

$$R_{4} = R_{brick} = \frac{L}{kA} = \frac{0.18 \text{ m}}{(0.72 \text{ W/m} \cdot ^{\circ}\text{C})(0.30 \times 1 \text{ m}^{2})} = 0.833 \, ^{\circ}\text{C/W}$$

$$R_{0} = R_{conv,2} = \frac{1}{h_{2}A} = \frac{1}{(20 \text{ W/m} \cdot ^{\circ}\text{C})(0.33 \times 1 \text{ m}^{2})} = 0.152 \, ^{\circ}\text{C/W}$$

$$\frac{1}{R_{mid}} = \frac{1}{R_{3}} + \frac{1}{R_{4}} + \frac{1}{R_{5}} = \frac{1}{54.55} + \frac{1}{0.833} + \frac{1}{54.55} \longrightarrow R_{mid} = 0.81 \, ^{\circ}\text{C/W}$$

$$R_{total} = R_{i} + R_{1} + 2R_{2} + R_{mid} + R_{o} = 0.303 + 2.33 + 2(0.275) + 0.81 + 0.152 = 4.145 \, ^{\circ}\text{C/W}$$

The steady rate of heat transfer through the wall per 0.33 m² is

$$\dot{Q} = \frac{T_{\infty 1} - T_{\infty 2}}{R_{total}} = \frac{[(22 - (-4))^{\circ}C]}{4.145^{\circ}C/W} = 6.27 \text{ W}$$

Then steady rate of heat transfer through the entire wall becomes

$$\dot{Q}_{total} = (6.27 \text{ W}) \frac{(4 \times 6)\text{m}^2}{0.33 \text{ m}^2} = 456 \text{ W}$$