**12-98** A spherical tank used to store iced water is subjected to winds. The rate of heat transfer to the iced water and the amount of ice that melts during a 24-h period are to be determined.

Assumptions 1 Steady operating conditions exist. 2 Thermal resistance of the tank is negligible. 3 Radiation effects are negligible. 4 Air is an ideal gas with constant properties. 5 The pressure of air is 1 atm.

Properties The properties of air at 1 atm pressure and the free stream temperature of 30°C are (Table A-22)

$$k = 0.02588 \text{ W/m.}^{\circ}\text{C}$$

$$v = 1.608 \times 10^{-5} \text{ m}^{2}/\text{s}$$

$$\mu_{\infty} = 1.872 \times 10^{-5} \text{ kg/m.s}$$

$$\mu_{s, @ 0^{\circ}\text{C}} = 1.729 \times 10^{-5} \text{ kg/m.s}$$

$$Pr = 0.7282$$

$$Analysis (a) \text{ The Reynolds number is}$$

$$Re = \frac{VD}{V} = \frac{\left[(25 \times 1000/3600) \text{ m/s}\right](3.02 \text{ m})}{1.608 \times 10^{-5} \text{ m}^{2}/\text{s}} = 1.304 \times 10^{6}$$

$$\dot{Q}$$

$$V = 25 \text{ km/h}$$

$$T_{\infty} = 30^{\circ}\text{C}$$

$$\dot{Q}$$

$$\dot{Q}$$

$$\dot{Q}$$

$$\dot{Q}$$

The Nusselt number corresponding to this Reynolds number is determined from

$$Nu = \frac{hD}{k} = 2 + \left[0.4 \,\mathrm{Re}^{0.5} + 0.06 \,\mathrm{Re}^{2/3}\right] \mathrm{Pr}^{0.4} \left(\frac{\mu_{\infty}}{\mu_{s}}\right)^{1/4}$$
$$= 2 + \left[0.4(1.304 \times 10^{6})^{0.5} + 0.06(1.304 \times 10^{6})^{2/3}\right] (0.7282)^{0.4} \left(\frac{1.872 \times 10^{-5}}{1.729 \times 10^{-5}}\right)^{1/4} = 1056$$

and 
$$h = \frac{k}{D} Nu = \frac{0.02588 \text{ W/m.}^{\circ}\text{C}}{3.02 \text{ m}} (1056) = 9.05 \text{ W/m}^{2}.^{\circ}\text{C}$$

The rate of heat transfer to the iced water is

$$\dot{Q} = hA_s(T_s - T_{\infty}) = h(\pi D^2)(T_s - T_{\infty}) = (9.05 \text{ W/m}^2.^{\circ}\text{C})[\pi (3.02 \text{ m})^2](30 - 0)^{\circ}\text{C} = 7779 \text{ W}$$

(b) The amount of heat transfer during a 24-hour period is

$$Q = \dot{Q}\Delta t = (7.779 \text{ kJ/s})(24 \times 3600 \text{ s}) = 672,000 \text{ kJ}$$

Then the amount of ice that melts during this period becomes

$$Q = mh_{if} \longrightarrow m = \frac{Q}{h_{if}} = \frac{672,000 \text{ kJ}}{333.7 \text{ kJ/kg}} = 2014 \text{ kg}$$