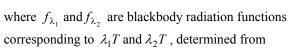
15-33 The variation of emissivity of a surface at a specified temperature with wavelength is given. The average emissivity of the surface and its emissive power are to be determined.

Analysis The average emissivity of the surface can be determined from

$$\begin{split} \varepsilon(T) &= \frac{\varepsilon_1 \int\limits_0^{\lambda_1} E_{b_{\lambda}}(T) d\lambda}{\sigma T^4} + \frac{\varepsilon_2 \int\limits_{\lambda_1}^{\lambda_2} E_{b_{\lambda}}(T) d\lambda}{\sigma T^4} + \frac{\varepsilon_3 \int\limits_{\lambda_2}^{\infty} E_{b_{\lambda}}(T) d\lambda}{\sigma T^4} \\ &= \varepsilon_1 f_{0 - \lambda_1} + \varepsilon_2 f_{\lambda_1 - \lambda_2} + \varepsilon_3 f_{\lambda_2 - \infty} \\ &= \varepsilon_1 f_{\lambda_1} + \varepsilon_2 (f_{\lambda_2} - f_{\lambda_1}) + \varepsilon_3 (1 - f_{\lambda_2}) \end{split}$$



$$\lambda_1 T = (2 \ \mu \text{m})(1000 \ \text{K}) = 2000 \ \mu \text{mK} \longrightarrow f_{\lambda_1} = 0.066728$$

 $\lambda_2 T = (6 \ \mu \text{m})(1000 \ \text{K}) = 6000 \ \mu \text{mK} \longrightarrow f_{\lambda_2} = 0.737818$

$$f_{0-\lambda_1}=f_{\lambda 1}-f_0=f_{\lambda_1} \text{ since } f_0=0 \text{ and } \mathbf{f}_{\lambda_2-\infty}=f_\infty-f_{\lambda_2} \text{ since } f_\infty=1.$$

and,

$$\varepsilon = (0.4)0.066728 + (0.7)(0.737818 - 0.066728) + (0.3)(1 - 0.737818) = 0.575$$

Then the emissive power of the surface becomes

$$E = \varepsilon \sigma T^4 = 0.575(5.67 \times 10^{-8} \text{ W/m}^2 \text{.K}^4)(1000 \text{ K})^4 = 32.6 \text{ kW/m}^2$$

