2-85 A helium balloon tied to the ground carries 2 people. The acceleration of the balloon when it is first released is to be determined.

Assumptions The weight of the cage and the ropes of the balloon is negligible.

Properties The density of air is given to be $\rho = 1.16 \text{ kg/m}^3$. The density of helium gas is $1/7^{th}$ of this.

Analysis The buoyancy force acting on the balloon is

$$V_{balloon} = 4\pi r^3/3 = 4\pi (5 \text{ m})^3/3 = 523.6 \text{ m}^3$$

$$F_B = \rho_{air} g V_{balloon}$$

$$= (1.16 \text{ kg/m}^3)(9.81 \text{m/s}^2)(523.6 \text{ m}^3) \left(\frac{1 \text{ N}}{1 \text{ kg} \cdot \text{m/s}^2}\right) = 5958 \text{ N}$$

The total mass is

$$m_{\text{He}} = \rho_{\text{He}} \mathbf{V} = \left(\frac{1.16}{7} \text{kg/m}^3\right) (523.6 \text{ m}^3) = 86.8 \text{ kg}$$

 $m_{\text{total}} = m_{\text{He}} + m_{\text{people}} = 86.8 + 2 \times 70 = 226.8 \text{ kg}$

The total weight is

$$W = m_{\text{total}} g = (226.8 \text{ kg})(9.81 \text{ m/s}^2) \left(\frac{1 \text{ N}}{1 \text{ kg} \cdot \text{m/s}^2} \right) = 2225 \text{ N}$$

Thus the net force acting on the balloon is

$$F_{\text{net}} = F_B - W = 5958 - 2225 = 3733 \text{ N}$$

Then the acceleration becomes

$$a = \frac{F_{\text{net}}}{m_{\text{total}}} = \frac{3733 \text{ N}}{226.8 \text{ kg}} \left(\frac{1 \text{kg} \cdot \text{m/s}^2}{1 \text{ N}} \right) = 16.5 \text{ m/s}^2$$

