
3-40 A car is to climb a hill in 10 s. The power needed is to be determined for three different cases.

Assumptions Air drag, friction, and rolling resistance are negligible.

Analysis The total power required for each case is the sum of the rates of changes in potential and kinetic energies. That is,

$$\dot{W}_{\text{total}} = \dot{W}_a + \dot{W}_g$$

(a) $\dot{W}_a = 0$ since the velocity is constant. Also, the vertical rise is $h = (100 \text{ m})(\sin 30^\circ) = 50 \text{ m}$. Thus,

$$\dot{W}_g = mg(z_2 - z_1) / \Delta t = (2000 \text{ kg})(9.81 \text{ m/s}^2)(50 \text{ m}) \left(\frac{1 \text{ kJ}}{1000 \text{ kg} \cdot \text{m}^2/\text{s}^2}\right) / (10 \text{ s}) = 98.1 \text{ kW}$$

and
$$\dot{W}_{\text{total}} = \dot{W}_a + \dot{W}_g = 0 + 98.1 = 98.1 \text{ kW}$$

(b) The power needed to accelerate is

$$\dot{W}_a = \frac{1}{2} m (V_2^2 - V_1^2) / \Delta t = \frac{1}{2} (2000 \text{ kg}) \left[(30 \text{ m/s})^2 - 0 \right] \left(\frac{1 \text{ kJ}}{1000 \text{ kg} \cdot \text{m}^2/\text{s}^2} \right) / (10 \text{ s}) = 90 \text{ kW}$$

and
$$\dot{W}_{\text{total}} = \dot{W}_a + \dot{W}_g = 90 + 98.1 =$$
188.1 kW

(c) The power needed to decelerate is

$$\dot{W}_a = \frac{1}{2}m(V_2^2 - V_1^2)/\Delta t = \frac{1}{2}(2000 \text{ kg})\left[(5 \text{ m/s})^2 - (35 \text{ m/s})^2\right]\left(\frac{1 \text{ kJ}}{1000 \text{ kg} \cdot \text{m}^2/\text{s}^2}\right)/(10 \text{ s}) = -120 \text{ kW}$$

and
$$\dot{W}_{\text{total}} = \dot{W}_a + \dot{W}_g = -120 + 98.1 = -21.9 \text{ kW}$$
 (breaking power)