5-63 The internal energy change of hydrogen gas during a heating process is to be determined using an empirical specific heat relation, constant specific heat at average temperature, and constant specific heat at room temperature.

Analysis (a) Using the empirical relation for $\bar{c}_p(T)$ from Table A-2c and relating it to $\bar{c}_v(T)$,

$$\bar{c}_{v}(T) = \bar{c}_{n} - R_{u} = (a - R_{u}) + bT + cT^{2} + dT^{3}$$

where a = 29.11, $b = -0.1916 \times 10^{-2}$, $c = 0.4003 \times 10^{-5}$, and $d = -0.8704 \times 10^{-9}$. Then,

$$\begin{split} \Delta \overline{u} &= \int_{1}^{2} \overline{c}_{v}(T) dT = \int_{1}^{2} \left[\left(a - R_{u} \right) + bT + cT^{2} + dT^{3} \right] dT \\ &= \left(a - R_{u} \right) \left(T_{2} - T_{1} \right) + \frac{1}{2} b \left(T_{2}^{2} + T_{1}^{2} \right) + \frac{1}{3} c \left(T_{2}^{3} - T_{1}^{3} \right) + \frac{1}{4} d \left(T_{2}^{4} - T_{1}^{4} \right) \\ &= (29.11 - 8.314) (800 - 200) - \frac{1}{2} (0.1961 \times 10^{-2}) (800^{2} - 200^{2}) \\ &+ \frac{1}{3} (0.4003 \times 10^{-5}) (800^{3} - 200^{3}) - \frac{1}{4} (0.8704 \times 10^{-9}) (800^{4} - 200^{4}) \\ &= 12,487 \text{ kJ/kmol} \\ \Delta u &= \frac{\Delta \overline{u}}{M} = \frac{12,487 \text{ kJ/kmol}}{2.016 \text{ kg/kmol}} = \mathbf{6194 \text{ kJ/kg}} \end{split}$$

(b) Using a constant c_p value from Table A-2b at the average temperature of 500 K,

$$c_{\nu,\text{avg}} = c_{\nu \text{@}500 \text{ K}} = 10.389 \text{ kJ/kg} \cdot \text{K}$$

 $\Delta u = c_{\nu,\text{avg}} (T_2 - T_1) = (10.389 \text{ kJ/kg} \cdot \text{K})(800 - 200) \text{K} = 6233 \text{ kJ/kg}$

(c) Using a constant c_p value from Table A-2a at room temperature,

$$c_{\nu,\text{avg}} = c_{\nu @ 300 \text{ K}} = 10.183 \text{ kJ/kg} \cdot \text{K}$$

 $\Delta u = c_{\nu,\text{avg}} (T_2 - T_1) = (10.183 \text{ kJ/kg} \cdot \text{K})(800 - 200) \text{K} = 6110 \text{ kJ/kg}$