
6-44 Heat is lost from the steam flowing in a nozzle. The velocity and the volume flow rate at the nozzle exit are to be determined.

Assumptions 1 This is a steady-flow process since there is no change with time. **2** Potential energy change is negligible. **3** There are no work interactions.

Analysis We take the steam as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed in the rate form as

Energy balance:

$$\frac{\dot{E}_{\text{in}} - \dot{E}_{\text{out}}}{\dot{E}_{\text{in}} - \dot{E}_{\text{out}}} = \underbrace{\Delta \dot{E}_{\text{system}}}^{\text{70 (steady)}}_{\text{Rate of net energy transfer by heat, work, and mass}} = 0$$
Rate of change in internal, kinetic, potential, etc. energies

$$\dot{E}_{\text{in}} = \dot{E}_{\text{out}}$$

$$\dot{m} \left(h_1 + \frac{V_1^2}{2} \right) = \dot{m} \left(h_2 + \frac{V_2^2}{2} \right) + \dot{Q}_{\text{out}} \quad \text{since } \dot{W} \cong \Delta \text{pe} \cong 0 \right)$$

$$h_1 + \frac{V_1^2}{2} = h_2 + \frac{V_2^2}{2} + \frac{\dot{Q}_{\text{out}}}{\dot{m}}$$

or

The properties of steam at the inlet and exit are (Table A-6)

$$P_1 = 800 \text{ kPa}$$
 $v_1 = 0.38429 \text{ m}^3/\text{kg}$
 $T_1 = 400^{\circ}\text{C}$ $h_1 = 3267.7 \text{ kJ/kg}$
 $P_2 = 200 \text{ kPa}$ $v_2 = 1.31623 \text{ m}^3/\text{kg}$
 $v_3 = 300^{\circ}\text{C}$ $h_4 = 3072.1 \text{ kJ/kg}$

The mass flow rate of the steam is

$$\dot{m} = \frac{1}{\nu_1} A_1 V_1 = \frac{1}{0.38429 \text{ m}^3/\text{s}} (0.08 \text{ m}^2) (10 \text{ m/s}) = 2.082 \text{ kg/s}$$

Substituting,

$$3267.7 \text{ kJ/kg} + \frac{(10 \text{ m/s})^2}{2} \left(\frac{1 \text{ kJ/kg}}{1000 \text{ m}^2/\text{s}^2} \right) = 3072.1 \text{ kJ/kg} + \frac{V_2^2}{2} \left(\frac{1 \text{ kJ/kg}}{1000 \text{ m}^2/\text{s}^2} \right) + \frac{25 \text{ kJ/s}}{2.082 \text{ kg/s}}$$

$$\longrightarrow V_2 = \textbf{606 m/s}$$

The volume flow rate at the exit of the nozzle is

$$\dot{\mathbf{V}}_2 = \dot{m}\mathbf{v}_2 = (2.082 \text{ kg/s})(1.31623 \text{ m}^3/\text{kg}) = \mathbf{2.74 m}^3/\text{s}$$