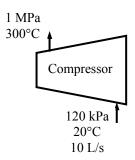
6-51 Air is compressed at a rate of 10 L/s by a compressor. The work required per unit mass and the power required are to be determined.

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Kinetic and potential energy changes are negligible. 3 Air is an ideal gas with constant specific heats.


Properties The constant pressure specific heat of air at the average temperature of $(20+300)/2=160^{\circ}C=433$ K is $c_p = 1.018$ kJ/kg·K (Table A-2b). The gas constant of air is R = 0.287 kPa·m³/kg·K (Table A-1).

Analysis (a) There is only one inlet and one exit, and thus $\dot{m}_1 = \dot{m}_2 = \dot{m}$. We take the compressor as the system, which is a control volume since mass crosses the boundary. The energy balance for this steadyflow system can be expressed in the rate form as

$$\dot{E}_{\rm in} - \dot{E}_{\rm out} = \Delta \dot{E}_{\rm system} = 0$$
Rate of net energy transfer by heat, work, and mass Rate of change in internal, kinetic, potential, etc. energies
$$\dot{E}_{\rm in} = \dot{E}_{\rm out}$$

$$\dot{W}_{\rm in} + \dot{m}h_1 = \dot{m}h_2 \quad (\text{since } \Delta \text{ke} \cong \Delta \text{pe} \cong 0)$$

$$\dot{W}_{\rm in} = \dot{m}(h_2 - h_1) = \dot{m}c_p (T_2 - T_1)$$

Thus,

$$w_{\text{in}} = c_p (T_2 - T_1) = (1.018 \text{ kJ/kg} \cdot \text{K})(300 - 20)\text{K} = 285.0 \text{ kJ/kg}$$

(b) The specific volume of air at the inlet and the mass flow rate are

$$\mathbf{v}_1 = \frac{RT_1}{P_1} = \frac{(0.287 \text{ kPa} \cdot \text{m}^3/\text{kg} \cdot \text{K})(20 + 273 \text{ K})}{120 \text{ kPa}} = 0.7008 \text{ m}^3/\text{kg}$$

$$\dot{m} = \frac{\dot{\mathbf{v}}_1}{\mathbf{v}_1} = \frac{0.010 \text{ m}^3/\text{s}}{0.7008 \text{ m}^3/\text{kg}} = 0.01427 \text{ kg/s}$$

Then the power input is determined from the energy balance equation to be

$$\dot{W}_{\rm in} = \dot{m}c_p (T_2 - T_1) = (0.01427 \text{ kg/s})(1.018 \text{ kJ/kg} \cdot \text{K})(300 - 20)\text{K} = 4.068 \text{ kW}$$