

ME 201 ADVANCED CALCULUS

8 February 2006

Midterm Examination

R. Culham

- This is a two-hour, closed-book examination, where you are permitted to use:
 - Schaum's - Mathematical Handbook of Formulas and Tables
 - one 8.5 in. \times 11 in. crib sheet. (one side)
- There are 6 questions to be answered. Read the questions very carefully.
- Clearly state all assumptions.
- It is your responsibility to write clearly and legibly.
- Reduce all equations to their simplest possible form.

Question 1 (11 marks)

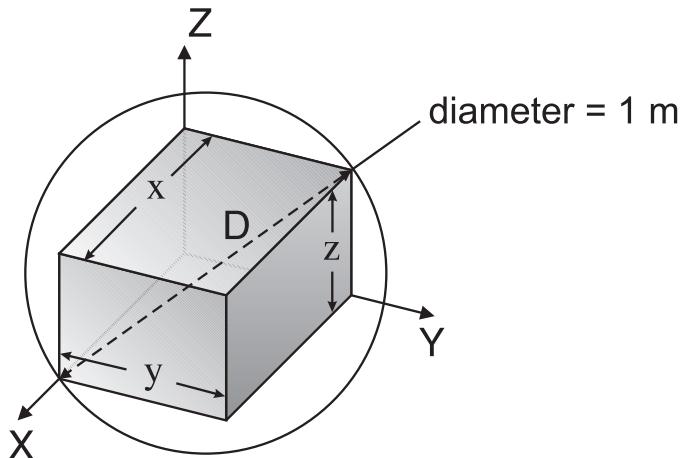
For the curve given by

$$\vec{R}(t) = \hat{i}(2 \ln t) - \hat{j}\left(\frac{1}{t} + t\right) - \hat{k}$$

find:

- velocity and acceleration vectors
- the angle (**radians**) between the velocity and acceleration vectors at $t = 1$
- the unit tangent vector
- the principal unit normal vector
- the length of the curve over the interval $1 \leq t \leq 2$

Question 2 (7 marks)


Find the curvature of the path

$$\vec{R}(t) = \hat{i}(e^t \cos t) + \hat{j}(e^t \sin t) + \hat{k}(e^t)$$

when $t = 0$.

Question 3 (11 marks)

Find the dimensions (x, y, z) of a rectangular box of maximum volume that can be contained within a sphere with a diameter of $D = 1 \text{ m}$, as shown below. Clearly demonstrate that this is the maximum volume. Note: the diagonal of the box will equal the diameter of the sphere.

Question 4 (9 marks)

Given the following two equations:

$$x^2 + y^2 - z^2 + 2xy = 1$$

$$x^3 + y^3 - 5y = 4$$

use the chain rule to find $\frac{dz}{dx}$.

Question 5 (6 marks)

Find the distance between the planes:

$$x - 2y + 2z = 5$$

$$3x - 6y + 6z = 30$$

Question 6 (11 marks)

Given the density function

$$f(x, y) = 6 - x^2y - 3xy^2$$

- i) Find the maximum rate of density change at $(2, -1)$.
- ii) Find the direction(s) of no density change at $(2, -1)$.
- iii) Find the rate of density change at $(2, -1)$ away from the origin.
- iv) Find the equation of the tangent to the graph $z = f(x, y)$ at the point $x = 2, y = -1$.