Problem 1: (Vector Fields)

- a) Given the following vector field, determine graphically whether the points P_1 and P_2 are sinks, sources, or neither.
- b) Determine graphically whether the circulation at points P_1 and P_2 is positive, negative, or zero.
- c) Given the following options, determine the equation that produces the field:

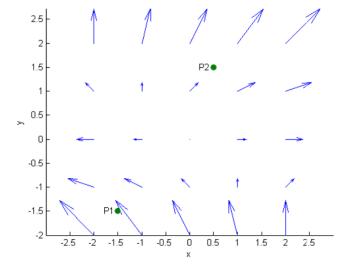
i.
$$\vec{F}(x, y) = (x, y^2)$$

ii.
$$\vec{F}(x, y) = (y^2, x)$$

iii.
$$\vec{F}(x, y) = (x + y, y^2)$$

iv.
$$\vec{F}(x, y) = (y, x^2 + y)$$

d) Verify part a) and b) mathematically using the correct equation



Problem 2: (Vector Field Identities)

If f is a scalar function and \vec{F} and \vec{G} are vector fields, state whether the following expressions are scalar, vector, or meaningless:

a)∇(∇f)

b)
$$curl(\vec{F} - \vec{G}) \times \nabla (div(\vec{F}))$$

c)
$$div(curl(\nabla f))$$

Problem 3: (Vector Field Identities)

For the field $\vec{F}(x, y, z) = (e^{yz})\hat{\imath} + (xze^{yz} + z\cos y)\hat{\jmath} + (xye^{yz} + \sin y)\hat{k}$

- a) Verify that $curl(\vec{F})=0$
- b) Find all scalar functions f(x,y,z) such that $\vec{F} = \nabla f$