14-82 Air is cooled and dehumidified at constant pressure. The amount of water removed from the air and the rate of cooling are to be determined.

Assumptions 1 This is a steady-flow process and thus the mass flow rate of dry air remains constant during the entire process $(\dot{m}_{a1} = \dot{m}_{a2} = \dot{m}_a)$. **2** Dry air and water vapor are ideal gases. **3** The kinetic and potential energy changes are negligible.

Properties The inlet and the exit states of the air are completely specified, and the total pressure is 1 atm. The properties of the air at various states are determined from the psychrometric chart (Figure A-31) to be

$$h_1 = 79.6 \text{ kJ/kg dry air}$$

$$\omega_1 = 0.0202 \text{ kg H}_2\text{O/kg dry air}$$

$$v_1 = 0.881 \text{ m}^3/\text{kg dry air}$$

$$\phi_2 = 1.0$$

$$h_2 = 51.0 \text{ kJ/kg dry air}$$

$$\omega_2 = 0.0130 \text{ kg H}_2\text{O/kg dry air}$$

$$Cooling coils$$

$$T_2 = 18^{\circ}\text{C}$$

$$\phi_2 = 100\%$$

$$\phi_2 = 100\%$$

$$T_1 = 28^{\circ}\text{C}$$

$$\phi_2 = 100\%$$

$$T_{dp1} = 25^{\circ}$$

$$200G \text{ Condensate}$$

Also,

and

$$h_w \cong h_{f @ 20^{\circ}\text{C}} = 83.915 \text{ kJ/kg}$$
 (Table A-4)

Analysis The amount of moisture in the air decreases due to dehumidification ($\omega_2 < \omega_1$). The mass flow rate of air is

$$\dot{m}_{a1} = \frac{\dot{V}_1}{v_1} = \frac{(10,000/3600) \text{ m}^3/\text{s}}{0.881 \text{ m}^3/\text{kg dry air}} = 3.153 \text{ kg/s}$$

Applying the water mass balance and energy balance equations to the combined cooling and dehumidification section, *Water Mass Balance*:

$$\sum \dot{m}_{w,i} = \sum \dot{m}_{w,e} \longrightarrow \dot{m}_{a1}\omega_1 = \dot{m}_{a2}\omega_2 + \dot{m}_w$$

 $\dot{m}_w = \dot{m}_a(\omega_1 - \omega_2) = (3.153 \text{ kg/s})(0.0202 - 0.0130) = \mathbf{0.0227 \text{ kg/s}}$

Energy Balance:

$$\begin{split} \dot{E}_{\rm in} - \dot{E}_{\rm out} &= \Delta \dot{E}_{\rm system} \\ \dot{\varphi}_{\rm 0 \, (steady)} &= 0 \\ \dot{E}_{\rm in} &= \dot{E}_{\rm out} \\ \sum \dot{m}_i h_i &= \dot{Q}_{out} + \sum \dot{m}_e h_e \\ \dot{Q}_{\rm out} &= \dot{m}_{a1} h_1 - (\dot{m}_{a2} h_2 + \dot{m}_w h_w) = \dot{m}_a (h_1 - h_2) - \dot{m}_w h_w \\ \dot{Q}_{\rm out} &= (3.153 \, {\rm kg/s})(79.6 - 51.0) {\rm kJ/kg} - (0.02227 \, {\rm kg/s})(83.915 \, {\rm kJ/kg}) \\ &= 88.3 \, {\rm kW} \end{split}$$