15-27 Butane C_4H_{10} is burned with 200 percent theoretical air. The kmol of water that needs to be sprayed into the combustion chamber per kmol of fuel is to be determined.

Assumptions 1 Combustion is complete. 2 The combustion products contain CO₂, H₂O, O₂, and N₂ only.

Properties The molar masses of C, H₂, O₂ and air are 12 kg/kmol, 2 kg/kmol, 32 kg/kmol, and 29 kg/kmol, respectively (Table A-1).

Analysis The reaction equation for 200% theoretical air without the additional water is

$$C_4H_{10} + 2a_{th}[O_2 + 3.76N_2] \longrightarrow BCO_2 + DH_2O + EO_2 + FN_2$$

where a_{th} is the stoichiometric coefficient for air. We have automatically accounted for the 100% excess air by using the factor $2a_{th}$ instead of a_{th} for air. The coefficient a_{th} and other coefficients are to be determined from the mass balances

Carbon balance: B = 4

Hydrogen balance: $2D = 10 \longrightarrow D = 5$ Oxygen balance: $2 \times 2a_{th} = 2B + D + 2E$

 $a_{th} = E$

C₄H₁₀ Products
Air
200%
theoretical

Nitrogen balance:

$$2a_{th} \times 3.76 = F$$

Solving the above equations, we find the coefficients (E = 6.5, F = 48.88, and $a_{th} = 6.5$) and write the balanced reaction equation as

$$C_4H_{10} + 13[O_2 + 3.76N_2] \longrightarrow 4CO_2 + 5H_2O + 6.5O_2 + 48.88N_2$$

With the additional water sprayed into the combustion chamber, the balanced reaction equation is

$$C_4H_{10} + 13[O_2 + 3.76N_2] + N_v H_2O \longrightarrow 4CO_2 + (5 + N_v) H_2O + 6.5 O_2 + 48.88 N_2$$

The partial pressure of water in the saturated product mixture at the dew point is

$$P_{v \text{ prod}} = P_{\text{sat}@60^{\circ}\text{C}} = 19.95 \text{ kPa}$$

The vapor mole fraction is

$$y_v = \frac{P_{v,\text{prod}}}{P_{\text{prod}}} = \frac{19.95 \text{ kPa}}{100 \text{ kPa}} = 0.1995$$

The amount of water that needs to be sprayed into the combustion chamber can be determined from

$$y_v = \frac{N_{\text{water}}}{N_{\text{total product}}} \longrightarrow 0.1995 = \frac{5 + N_v}{4 + 5 + N_v + 6.5 + 48.88} \longrightarrow N_v =$$
9.796 kmol