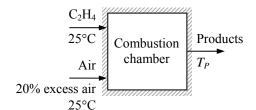
15-89 Ethylene gas is burned steadily with 20 percent excess air. The temperature of products, the entropy generation, and the exergy destruction (or irreversibility) are to be determined.

Assumptions 1 Combustion is complete. 2 Steady operating conditions exist. 3 Air and the combustion gases are ideal gases. 4 Changes in kinetic and potential energies are negligible.

Analysis (a) The fuel is burned completely with the excess air, and thus the products will contain only CO_2 , H_2O , N_2 , and some free O_2 . Considering 1 kmol of C_2H_4 , the combustion equation can be written as

$$C_2H_4(g)+1.2a_{th}(O_2+3.76N_2) \longrightarrow 2CO_2+2H_2O+0.2a_{th}O_2+(1.2)(3.76)a_{th}N_2$$


where a_{th} is the stoichiometric coefficient and is determined from the O_2 balance,

$$1.2a_{th} = 2 + 1 + 0.2a_{th} \longrightarrow a_{th} = 3$$

Thus,

$$C_2H_4(g) + 3.6(O_2 + 3.76N_2) \longrightarrow 2CO_2 + 2H_2O + 0.6O_2 + 13.54N_2$$

Under steady-flow conditions, the exit temperature of the product gases can be determined from the steady-flow energy equation, which reduces to

$$\sum N_P \left(\overline{h_f^{\circ}} + \overline{h} - \overline{h^{\circ}} \right)_P = \sum N_R \overline{h_f^{\circ}}_{f,R} = \left(N \overline{h_f^{\circ}} \right)_{C_2 H_4}$$

since all the reactants are at the standard reference state, and for O2 and N2. From the tables,

	$\overline{\mathbf{h}}_{\mathbf{f}}^{\circ}$	$\overline{\mathbf{h}}_{\mathbf{298\ K}}$
Substance	kJ/kmol	kJ/kmol
$C_2H_4(g)$	52,280	
O_2	0	8682
N_2	0	8669
$H_2O(g)$	-241,820	9904
CO_2	-393,520	9364

Substituting,

or,

$$(2)(-393,520 + \overline{h}_{CO_2} - 9364) + (2)(-241,820 + \overline{h}_{H_2O} - 9904) + (0.6)(0 + \overline{h}_{O_2} - 8682) + (13.54)(0 + \overline{h}_{N_2} - 8669) = (1)(52,280) 2\overline{h}_{CO_2} + 2\overline{h}_{H_2O} + 0.6\overline{h}_{O_2} + 13.54\overline{h}_{N_2} = 1,484,083 \text{ kJ}$$

By trial and error,

$$T_P = 2269.6 \text{ K}$$

(b) The entropy generation during this adiabatic process is determined from

$$S_{\rm gen} = S_P - S_R = \sum N_P \overline{s}_P - \sum N_R \overline{s}_R$$

The C_2H_4 is at 25°C and 1 atm, and thus its absolute entropy is 219.83 kJ/kmol·K (Table A-26). The entropy values listed in the ideal gas tables are for 1 atm pressure. Both the air and the product gases are at a total pressure of 1 atm, but the entropies are to be calculated at the partial pressure of the components which is equal to $P_i = y_i P_{\text{total}}$, where y_i is the mole fraction of component i. Also,

$$S_i = N_i \overline{s}_i(T, P_i) = N_i \left(\overline{s}_i^{\circ}(T, P_0) - R_u \ln(y_i P_m) \right)$$

PROPRIETARY MATERIAL. © 2011 The McGraw-Hill Companies, Inc. Limited distribution permitted only to teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.

The entropy calculations can be presented in tabular form as

	N_i	$\mathbf{y_i}$	$ar{\mathbf{s}}_{\mathbf{i}}^{\circ}ig(\mathbf{T,1atm}ig)$	$R_u ln(y_i P_m)$	$N_i \overline{s}_i$
C ₂ H ₄	1	1.00	219.83		219.83
O_2	3.6	0.21	205.14	-12.98	784.87
N_2	13.54	0.79	191.61	-1.96	2620.94
				S_{I}	$_{R} = 3625.64 \text{ kJ/K}$
CO ₂	2	0.1103	316.881	-18.329	670.42
H_2O	2	0.1103	271.134	-18.329	578.93
O_2	0.6	0.0331	273.467	-28.336	181.08
N_2	13.54	0.7464	256.541	-2.432	3506.49

 $S_P = 4936.92 \text{ kJ/K}$

Thus,

$$S_{\text{gen}} = S_P - S_R = 4936.92 - 3625.64 =$$
1311.28 kJ/kmol·K

and

(c)
$$X_{\text{destroyed}} = T_0 S_{\text{gen}} = (298 \text{ K})(1311.28 \text{ kJ/kmol·K } C_2 H_4) = 390,760 \text{ kJ } (\text{per kmol } C_2 H_4)$$