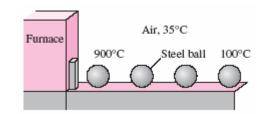
8-49 Carbon steel balls are to be annealed at a rate of 2500/h by heating them first and then allowing them to cool slowly in ambient air at a specified rate. The total rate of heat transfer from the balls to the ambient air and the rate of exergy destruction due to this heat transfer are to be determined.

Assumptions 1 The thermal properties of the balls are constant. 2 There are no changes in kinetic and potential energies. 3 The balls are at a uniform temperature at the end of the process.

Properties The density and specific heat of the balls are given to be $\rho = 7833 \text{ kg/m}^3$ and $c_p = 0.465 \text{ kJ/kg.}^\circ\text{C}$.

Analysis (a) We take a single ball as the system. The energy balance for this closed system can be expressed as

$$\begin{array}{c} \underline{E_{\rm in}-E_{\rm out}}_{\rm Net\ energy\ transfer} = \underline{\Delta E_{\rm system}}_{\rm Change\ in\ internal,\ kinetic,\ potential,\ etc.\ energies} \\ -Q_{\rm out} = \Delta U_{\rm ball} = m(u_2-u_1) \\ Q_{\rm out} = mc_p(T_1-T_2) \end{array}$$



The amount of heat transfer from a single ball is

$$m = \rho \mathbf{V} = \rho \frac{\pi D^3}{6} = (7833 \text{ kg/m}^3) \frac{\pi (0.008 \text{ m})^3}{6} = 0.00210 \text{ kg}$$

$$Q_{\text{out}} = mc_n (T_1 - T_2) = (0.0021 \text{ kg})(0.465 \text{ kJ/kg.}^\circ\text{C})(900 - 100)^\circ\text{C} = 781 \text{ J} = 0.781 \text{ kJ (per ball)}$$

Then the total rate of heat transfer from the balls to the ambient air becomes

$$\dot{Q}_{\text{out}} = \dot{n}_{\text{ball}} Q_{\text{out}} = (1200 \text{ balls/h}) \times (0.781 \text{ kJ/ball}) = 936 \text{ kJ/h} = 260 \text{ W}$$

(b) The exergy destruction (or irreversibility) can be determined from its definition $X_{\text{destroyed}} = T_0 S_{\text{gen}}$. The entropy generated during this process can be determined by applying an entropy balance on an *extended system* that includes the ball and its immediate surroundings so that the boundary temperature of the extended system is at 35°C at all times:

$$\underbrace{S_{\text{in}} - S_{\text{out}}}_{\text{Net entropy transfer by heat and mass}} + \underbrace{S_{\text{gen}}}_{\text{Entropy}} = \underbrace{\Delta S_{\text{system}}}_{\text{Change in entropy}}$$

$$- \frac{Q_{\text{out}}}{T_b} + S_{\text{gen}} = \Delta S_{\text{system}} \quad \rightarrow \quad S_{\text{gen}} = \frac{Q_{\text{out}}}{T_b} + \Delta S_{\text{system}}$$

where

$$\Delta S_{\text{system}} = m(s_2 - s_1) = mc_p \ln \frac{T_2}{T_1} = (0.00210 \text{ kg})(0.465 \text{ kJ/kg.K}) \ln \frac{100 + 273}{900 + 273} = -0.00112 \text{ kJ/K}$$

Substituting,

$$S_{\text{gen}} = \frac{Q_{\text{out}}}{T_b} + \Delta S_{\text{system}} = \frac{0.781 \,\text{kJ}}{308 \,\text{K}} - 0.00112 \,\text{kJ/K} = 0.00142 \,\text{kJ/K} \quad \text{(per ball)}$$

Then the rate of entropy generation becomes

$$\dot{S}_{\text{gen}} = S_{\text{gen}} \dot{n}_{\text{ball}} = (0.00142 \text{ kJ/K} \cdot \text{ball})(1200 \text{ balls/h}) = 1.704 \text{ kJ/h.K} = 0.000473 \text{ kW/K}$$

Finally,

$$\dot{X}_{\text{destroyed}} = T_0 \dot{S}_{\text{gen}} = (308 \text{ K})(0.000473 \text{ kW/K}) = 0.146 \text{ kW} = 146 \text{ W}$$