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The Thermodynamics of State

IDEAL GAS

The defining equation for a ideal gas is

Pv
— = constant = R
T

Knowing that v = V/m

PV
—— = constant = R
Tm

where R is a gas constant for a particular gas (as given in C&B Tables A-1 and A-2).

An Isentropic Process for an Ideal Gas

Given:

constant specific heats over a wide range of temperature

e ds=0
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Gibb’s equation can be written as

Tds = du + Pdv = ¢,dT + Pdv =0

where ds = 0 because we have assumed an isentropic process.

The definition of enthalpy is
h =u+ Pv
Taking the derivative yields

dh = du + Pdv +vdP
—_———

=Tds

dh =Tds +vdP = Tds =0=dh — vdP

cpdT — vdP =0

Equating Egs. (1) and (2) through the dT" term gives

dP d
P = - (3)
C, U

Integrating (3) from its initial state to a final state
Plv’f = szg = constant = Pv"®

where

k=P

Cy

(2)

The product of P - v* remains constant for an ideal gas when:

e specific heats are constant



e the gas undergoes an isentropic process — reversible + adiabatic

Combining this result with the ideal gas equation of state
T, (o k—1 (P (k—1)/k
T]_ - ()] - P]_

The isentropic process is a special case of a more general process known as a polytropic process

where — Pv™ = constant and n is any number.

Special Cases

n=1 Pv = RT = constant = isothermal process

n=20 Pv® = constant = P = isobaric process (constant pressure)
n==k Pv* = constant = isentropic process (k = cp/cy)

n = oo Pv® = constant => isochoric process (constant volume)

Relative Pressure and Relative Specific Volume

e typically we assume specific heat to be constant with respect to temperature

e but when temperature swings are significant, this assumption can lead to inaccuracies, i.e.

T (K) cp (kJ/kg - K) % difference

300 1.0057
1000 1.1417 13.5
2500 1.688 67.8

e the relative pressure and relative volume tables (C&B Table A-17), provide an accurate
way of including the temperature effects on specific heat for ideal gases during isentropic
processes

e note: the specific heat ratio term given by k = ¢, /¢, will also be influenced by temperature



e Procedure:

given T4, P; and P; for an isentropic process

determine P,; at T from Table A-17

calculate P,,, where

<P2> . P'r'2
P1 s—=const P”‘l

— read T5 from Table A-17 for the calculated value of P,

e use a similar procedure if volume is known instead of pressure, where

<U2> _ Ur2
U1 s=const Ur1

In Summary

For an ideal gas with constant ¢, and c,

Pv = RT
U2 — U — Cv(T2 - Tl)
h2 — hl == Cp(Tz — Tl)

There are 3 forms of a change in entropy as a function of T' & v, T' & P, and P & v.

T2 ()
So — 81 = Cyln—+ Rln—

1 (%1

T: P

= Cpll’l—2 —Rln—2
T P

v P

= cpln—z—l—cvln—2
V1 P1



A General Formulation

Steady State, Steady Flow in a Flow Channel of Arbitrary Cross-section with Work and Heat
Transfer

TER
dE - Efinal - Einitial
== Em—i—dm - E:n
where
E = 1(e+ Pv)
’U* 2
= m(u+ ( 2) + gz + Pv)
From the 1st law
rateof energy  rateof rate of net rate of energy
storage ~ work heat transfer leaving the system
dE . . .
dfv = dW — dQ — dE (1)



1%
where = 0 for steady state.

Equation (1) becomes

(v*)?
2

Ode—dQ—'r'nd[u—l—Pv—l— +gz] (2)

From the 2nd law

entropy = { eniropy — entropy entropy
storage in flow out flow production

rate of { rate of rate of } rate of
_|_

dScv . . dQ :
= |MS|z — |MS|zt+de — P
2t [ms]e — [MS]ata Tron + Ps
as
where —<Y — 0 for steady state.
dG .
0 = —mds — @ + Ps
TER
or
dQ = TTER,PS — TTER’I’;’LdS (3)

Combining (2) and (3) through dQ

(v*)?
2

TTERﬁs—TTERmds:dW—md<u+Pv+

+ 92> )

Equation (4) can be used for any SS-SF process.



Special Cases

Reversible, SS-SF Process

Reversible implies = Ps=0

e frictionless process
e heat transfer is allowed but must be across AT — 0

e whichmeans Trgr = Tcy = T

Equation 4 becomes

dw (v*)?
—— = —-Tds+ du+ d(Pv) +d 5 + d(g=)
m —_— ——
=du + Pdv +vdP
—_———
=Tds
Therefore
dW *)2
f:vdPer<(” ) )—l—d(gz) (6)
m 2
Integrating Eq. (6) between the inlet and the outlet
W out *\2 |[out out
f:/ vdP + (v") + gz (7)
m in 2 in in
—_— —
AKE APE
but AKFE and APFE are usually negligible.
fAKE+APE =0
W out
A / vdP @®)
m n

Equation can be used for a reversible, SS-SF flow in a liquid or a gas.

(5)



If we keep in mind
Pliq >> Pgas = Viiq << Vgas

i.e. water @ 25 °C p = 997 kg/m?3 and air @ 25 °C p = 1.18 kg/m?

Therefore

(VV) (W)
—Q << |

m m

liq gas

For example: the work required to operate a pump is much less that that required to operate a
COMpressor.

Incompressible Substance

This is a special case of Eq. (8) where v = constant = v;, — Vout-

From Equation (8)

"i
T = U'in(Pout - P’Ln) (9)
m

The work term represents the minimum work required to pump a liquid from F;,, to P,,: with
negligible AKF and APE.

Incompressible Substance and dW =0

From Eq. (6)

vdP + d <(”;)2> +d(gz) =0 (10)

Therefore

(D) o) -




d <§ + (”;)2 n gz) —0 (11)

Integrating gives

P *) 2
P ()
P

+ gz = constant (12)

Equation (12) is Bernoulli’s equation for frictionless flow with constant density. The constant is
Bernoulli’s constant, which remains constant along a streamline for steady, frictionless, incom-
pressible flow.

Isothermal Ideal Gas, Compression/Expansion
This is a special case of Eq. (8) for an ideal gas where Pv = RT

Pv = constant = (Pv);, = (PV)out

3=

out out dP
= [TwdP = [ (Pv)in
in in P

Therefore

Pou
= IinUin In ( t) (13)

in

Isentropic Ideal Gas, Compression/Expansion

Isentropic implies a reversible and adiabatic process where s = constant. With an ideal gas,
Pv* = constant and (Pv*);, = (Pv*)ous.

Equation (8) becomes

W out out (ka)in 1/k

™



i (k—1)/k
% — (L) (Pv);n [(%) — 1} = cp(Touwt — Tin) (14)

The right side of Eq. (14) is based on the fact that AKE + APE = 0 and dh = du + dPv
and du = 0. Which leads to h = / vdP.

Note: for the same inlet state and pressure ratio

= | < |
m m
rev.,isothermal rev.,adiabatic
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