Brayton Cycle

Reading Problems
9-8§ — 9-10 9-78, 9-84, 9-108

Open Cycle Gas Turbine Engines
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e after compression, air enters a combustion chamber into which fuel is injected
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e the resulting products of combustion expand and drive the turbine
e combustion products are discharged to the atmosphere

e compressor power requirements vary from 40-80% of the power output of the turbine (re-
mainder is net power output), i.e. back work ratio =0.4 — 0.8

e high power requirement is typical when gas is compressed because of the large specific
volume of gases in comparison to that of liquids

Idealized Air Standard Brayton Cycle

e closed loop
e constant pressure heat addition and rejection

e ideal gas with constant specific heats
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Brayton Cycle Efficiency

The Brayton cycle efficiency can be written as

n=1— (rp) "M/

where we define the pressure ratio as:

P, P

r, = — = —
PP P,



Maximum Pressure Ratio

Given that the maximum and minimum temperature can be prescribed for the Brayton cycle, a
change in the pressure ratio can result in a change in the work output from the cycle.
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The maximum temperature in the cycle (73) is limited by metallurgical conditions because the
turbine blades cannot sustain temperatures above 1300 K. Higher temperatures (up to 1600 K can
be obtained with ceramic turbine blades). The minimum temperature is set by the air temperature
at the inlet to the engine.



Brayton Cycle with Reheat
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e T3 is limited due to metallurgical constraints

e excess air is extracted and fed into a second stage combustor and turbine
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e turbine outlet temperature is increased with reheat (ITg > T,), therefore potential for regen-

eration is enhanced

e when reheat and regeneration are used together the thermal efficiency can increase signifi-

cantly



Compression with Intercooling
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e the work required to compress in a steady flow device can be reduced by compressing in
stages

e cooling the gas reduces the specific volume and in turn the work required for compression

e by itself compression with intercooling does not provide a significant increase in the effi-
ciency of a gas turbine because the temperature at the combustor inlet would require addi-
tional heat transfer to achieve the desired turbine inlet temperature

e but the lower temperature at the compressor exit enhances the potential for regeneration i.e.
a larger AT across the heat exchanger



Brayton Cycle with Regeneration
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e aregenerator (heat exchanger) is used to reduce the fuel consumption to provide the required
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o the efficiency with a regenerator can be determined as:
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Cp(TG — Tl)

= 1———— = (forareal regenerator)
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o for a given Tin/Timae, the use of a regenerator above a certain r, will result in a reduction
of n
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Regenerator Effectiveness

€ — Qreg,actual . h5 - h2 o h5 - h2 . T5 - T2
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Typical values of effectiveness are < 0.7

Repeated intercooling, reheating and regeneration will provide a system that approximates the

T
Ericsson Cycle which has Carnot efficiency (n =1- —L>

Brayton Cycle With Intercooling, Reheating and Regeneration
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Compressor and Turbine Efficiencies
Isentropic Efficiencies
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Given the turbine and compressor efficiencies and the maximum (73) and the minimum (7} ) tem-
peratures in the process, find the cycle efficiency (1cycie)-

(4) Calculate T, from the isentropic relationship,

Ty, B P, (k—1)/k
T \P '

Get T3 from (1).
(5) Do the same for T using (2) and the isentropic relationship.

(6) substitute T and T} in (3) to find the cycle efficiency.



