
State Equations

Reading Problems
6-4 → 6-12

The Thermodynamics of State

IDEAL GAS

The defining equation for a ideal gas is

Pv

T
= constant = R

Knowing that v = V/m

PV

Tm
= constant = R

where R is a gas constant for a particular gas (as given in C&B Tables A-1 and A-2).

An Isentropic Process for an Ideal Gas

Given:

• constant specific heats over a wide range of temperature

• ds = 0

• du = cvdT ≡ cv =

(
∂u

∂T

)
V

• dh = cpdT ≡ cp =

(
∂h

∂T

)
P
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Gibb’s equation can be written as

Tds = du + Pdv = cvdT + Pdv = 0 (1)

where ds = 0 because we have assumed an isentropic process.

The definition of enthalpy is

h = u + Pv

Taking the derivative yields

dh = du + Pdv︸ ︷︷ ︸
≡Tds

+vdP

dh = Tds + vdP ⇒ Tds = 0 = dh − vdP

cpdT − vdP = 0 (2)

Equating Eqs. (1) and (2) through the dT term gives

dP

P
= −cp

cv

dv

v
(3)

Integrating (3) from its initial state to a final state

P1v
k
1 = P2v

k
2 = constant = Pvk

where

k =
cp

cv

The product of P · vk remains constant for an ideal gas when:

• specific heats are constant
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• the gas undergoes an isentropic process → reversible + adiabatic

Combining this result with the ideal gas equation of state

T2

T1

=

(
v1

v2

)k−1

=

(
P2

P1

)(k−1)/k

The isentropic process is a special case of a more general process known as a polytropic process

where → Pvn = constant and n is any number.

Special Cases

n = 1 Pv = RT = constant ⇒ isothermal process

n = 0 Pv0 = constant = P ⇒ isobaric process (constant pressure)

n = k Pvk = constant ⇒ isentropic process (k = cp/cv)

n = ∞ Pv∞ = constant ⇒ isochoric process (constant volume)

Relative Pressure and Relative Specific Volume
• typically we assume specific heat to be constant with respect to temperature

• but when temperature swings are significant, this assumption can lead to inaccuracies, i.e.

T (K) cp (kJ/kg · K) % difference

300 1.0057
1000 1.1417 13.5
2500 1.688 67.8

• the relative pressure and relative volume tables (C&B Table A-17), provide an accurate
way of including the temperature effects on specific heat for ideal gases during isentropic
processes

• note: the specific heat ratio term given by k = cp/cv will also be influenced by temperature
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• Procedure:

– given T1, P1 and P2 for an isentropic process

– determine Pr1 at T1 from Table A-17

– calculate Pr2, where(
P2

P1

)
s=const

=
Pr2

Pr1

– read T2 from Table A-17 for the calculated value of Pr2

• use a similar procedure if volume is known instead of pressure, where

(
v2

v1

)
s=const

=
vr2

vr1

In Summary

For an ideal gas with constant cp and cv

Pv = RT

u2 − u1 = cv(T2 − T1)

h2 − h1 = cp(T2 − T1)

There are 3 forms of a change in entropy as a function of T & v, T & P , and P & v.

s2 − s1 = cv ln
T2

T1

+ R ln
v2

v1

= cp ln
T2

T1

− R ln
P2

P1

= cp ln
v2

v1

+ cv ln
P2

P1

R = cp − cv
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A General Formulation

Steady State, Steady Flow in a Flow Channel of Arbitrary Cross-section with Work and Heat
Transfer

dĖ = Ėfinal − Ėinitial

= Ėx+dx − Ėx

where

Ė = ṁ(e + Pv)

= ṁ(u +
(v∗)2

2
+ gz + Pv)

From the 1st law

rate of energy
storage

=
rate of
work

+
rate of

heat transfer
+

net rate of energy
leaving the system

dECV

dt
= dẆ − dQ̇ − dĖ (1)
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where
dECV

dt
= 0 for steady state.

Equation (1) becomes

0 = dẆ − dQ̇ − ṁ d

[
u + Pv +

(v∗)2

2
+ gz

]
(2)

From the 2nd law

rate of
entropy
storage

=


rate of
entropy
inflow

−
rate of
entropy
outflow

 +
rate of
entropy

production

dSCV

dt
= [ṁs]x − [ṁs]x+dx − dQ̇

TTER

+ ṖS

where
dSCV

dt
= 0 for steady state.

0 = −ṁds − dQ̇

TTER

+ ṖS

or

dQ̇ = TTERṖS − TTERṁds (3)

Combining (2) and (3) through dQ̇

TTER ṖS − TTER ṁds = dẆ − ṁ d

(
u + Pv +

(v∗)2

2
+ gz

)
(4)

Equation (4) can be used for any SS-SF process.
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Special Cases

Reversible, SS-SF Process

Reversible implies ⇒ ṖS = 0

• frictionless process

• heat transfer is allowed but must be across ∆T → 0

• which means TTER ≈ TCV = T

Equation 4 becomes

dẆ

ṁ
= −Tds + du + d(Pv)︸ ︷︷ ︸

=du + Pdv︸ ︷︷ ︸
=T ds

+vdP︸ ︷︷ ︸
+d

(
(v∗)2

2

)
+ d(gz) (5)

Therefore

dẆ

ṁ
= vdP + d

(
(v∗)2

2

)
+ d(gz) (6)

Integrating Eq. (6) between the inlet and the outlet

Ẇ

ṁ
=

∫ out

in
vdP +

(v∗)2

2

∣∣∣∣∣
out

in︸ ︷︷ ︸
∆KE

+ gz

∣∣∣∣∣
out

in︸ ︷︷ ︸
∆P E

(7)

but ∆KE and ∆PE are usually negligible.

If ∆KE + ∆PE = 0

Ẇ

ṁ
=

∫ out

in
vdP (8)

Equation can be used for a reversible, SS-SF flow in a liquid or a gas.
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If we keep in mind

ρliq >> ρgas ⇒ vliq << vgas

i.e. water @ 25 ◦C ρ = 997 kg/m3 and air @ 25 ◦C ρ = 1.18 kg/m3

Therefore

Ẇ

ṁ


liq

<<

Ẇ

ṁ


gas

For example: the work required to operate a pump is much less that that required to operate a
compressor.

Incompressible Substance

This is a special case of Eq. (8) where v = constant = vin − vout.

From Equation (8)

Ẇ

ṁ
= vin(Pout − Pin) (9)

The work term represents the minimum work required to pump a liquid from Pin to Pout with
negligible ∆KE and ∆PE.

Incompressible Substance and dẆ = 0

From Eq. (6)

vdP + d

(
(v∗)2

2

)
+ d(gz) = 0 (10)

Therefore

d

(
P

ρ

)
+ d

(
(v∗)2

2

)
+ d(gz) = 0
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d

(
P

ρ
+

(v∗)2

2
+ gz

)
= 0 (11)

Integrating gives

P

ρ
+

(v∗)2

2
+ gz = constant (12)

Equation (12) is Bernoulli’s equation for frictionless flow with constant density. The constant is
Bernoulli’s constant, which remains constant along a streamline for steady, frictionless, incom-
pressible flow.

Isothermal Ideal Gas, Compression/Expansion

This is a special case of Eq. (8) for an ideal gas where Pv = RT

Pv = constant = (Pv)in = (Pv)out

Ẇ

ṁ
=

∫ out

in
vdP =

∫ out

in
(Pv)in

dP

P

Therefore

Ẇ

ṁ
= Pinvin ln

(
Pout

Pin

)
(13)

Isentropic Ideal Gas, Compression/Expansion

Isentropic implies a reversible and adiabatic process where s = constant. With an ideal gas,
Pvk = constant and (Pvk)in = (Pvk)out.

Equation (8) becomes

Ẇ

ṁ
=

∫ out

in
vdP =

∫ out

in

[
(Pvk)in

P

]1/k

dP
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Ẇ

ṁ
=

(
k

k − 1

)
(Pv)in

(
Pout

Pin

)(k−1)/k

− 1

 = cp(Tout − Tin) (14)

The right side of Eq. (14) is based on the fact that ∆KE + ∆PE = 0 and dh = du + dPv

and du = 0. Which leads to h =
∫

vdP .

Note: for the same inlet state and pressure ratio

⇒
Ẇ

ṁ


rev.,isothermal

<

Ẇ

ṁ


rev.,adiabatic
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