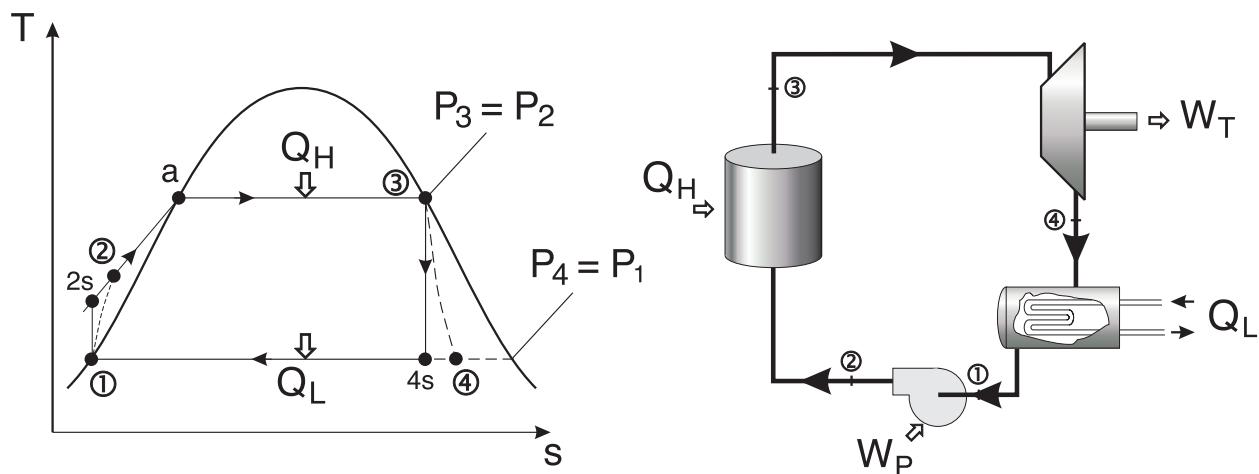


Rankine Cycle



Reading
9-2 → 9-7

Problems
9-16, 9-23, 9-30, 9-38, 9-43, 9-84

Definitions

- working fluid is alternately vaporized and condensed as it recirculates in a closed cycle
- water is typically used as the working fluid because of its low cost and relatively large value of enthalpy of vaporization
- the standard vapour cycle that excludes internal irreversibilities is called the **Ideal Rankine Cycle**

- the condensation process is allowed to proceed to completion between state points 4 → 1
 - provides a saturated liquid at 1
- the water at state point 1 can be conveniently pumped to the boiler pressure at state point 2
- but the water is not at the saturation temperature corresponding to the boiler pressure
- heat must be added to change the water at 2 to saturated water at 'a'
- when heat is added at non-constant temperature (between 2 – a), the cycle efficiency will decrease

Analyze the Process

Assume steady flow, $KE = PE = 0$.

From a 1st law balance, we know

$$\text{energy in} = \text{energy out}$$

Device	1st Law Balance
Boiler	$h_2 + q_H = h_3 \Rightarrow q_H = h_3 - h_2$ (in)
Turbine	$h_3 = h_4 + w_T \Rightarrow w_T = h_3 - h_4$ (out)
Condenser	$h_4 = h_1 + q_L \Rightarrow q_L = h_4 - h_1$ (out)
Pump	$h_1 + w_P = h_2 \Rightarrow w_P = h_2 - h_1$ (in)

The net work output is given as

$$\begin{aligned} w_T - w_P &= (h_3 - h_4) - (h_2 - h_1) \\ &= (h_3 - h_4) + (h_1 - h_2) \end{aligned}$$

The net heat supplied to the boiler is

$$q_H = (h_3 - h_2)$$

The Rankine efficiency is

$$\begin{aligned} \eta_R &= \frac{\text{net work output}}{\text{heat supplied to the boiler}} \\ &= \frac{(h_3 - h_4) + (h_1 - h_2)}{(h_3 - h_2)} \end{aligned}$$

If we consider the fluid to be incompressible

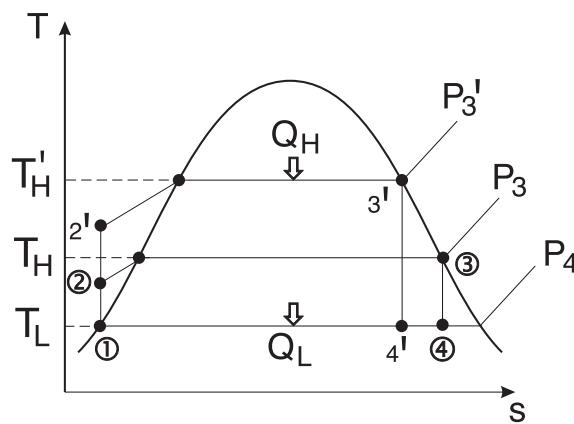
$$(h_2 - h_1) = v(P_2 - P_1)$$

Since the actual process is irreversible, an isentropic efficiency can be defined such that

$$\text{Expansion process} \Rightarrow \text{Isentropic efficiency} = \frac{\text{actual work}}{\text{isentropic work}}$$

$$\text{Compression process} \Rightarrow \text{Isentropic efficiency} = \frac{\text{isentropic work}}{\text{actual work}}$$

Both isentropic efficiencies will have a numerical value between 0 and 1.


Effects of Boiler and Condenser Pressure

We know the efficiency is proportional to

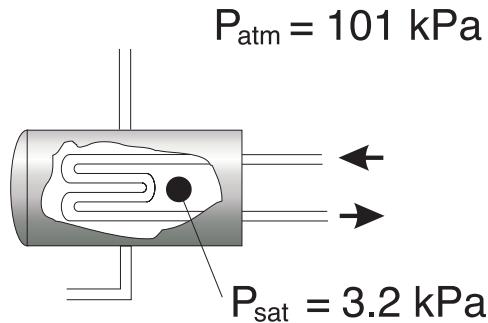
$$\eta \propto 1 - \frac{T_L}{T_H}$$

The question is → how do we increase efficiency $\Rightarrow T_L \downarrow$ and/or $T_H \uparrow$.

1. INCREASED BOILER PRESSURE:

- an increase in boiler pressure results in a higher T_H for the same T_L , therefore $\eta \uparrow$.
- but $4'$ has a lower quality than 4
 - wetter steam at the turbine exhaust

- results in cavitation of the turbine blades
- $\eta \downarrow$ plus \uparrow maintenance
- quality should be $> 90\%$ at the turbine exhaust


2. LOWER T_L :

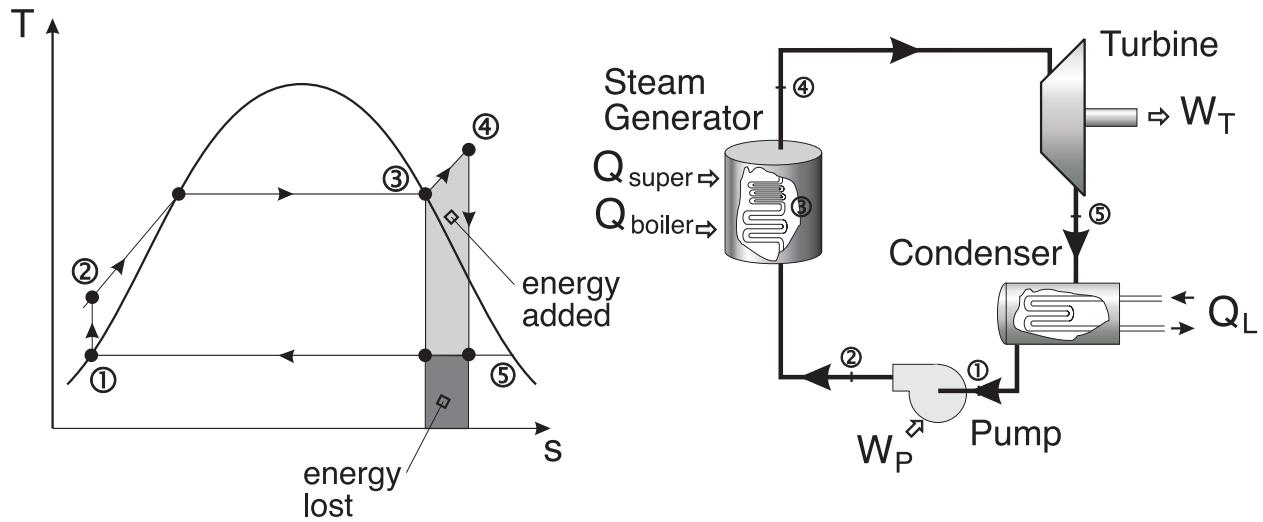
- we are generally limited by the **TER** (lake, river, etc.)

$$\text{eg. lake @ } 15^\circ\text{C} + \underbrace{\Delta T = 10^\circ\text{C}}_{\text{resistance to HT}} = 25^\circ\text{C}$$

$$\Rightarrow P_{\text{sat}} = 3.2 \text{ kPa.}$$

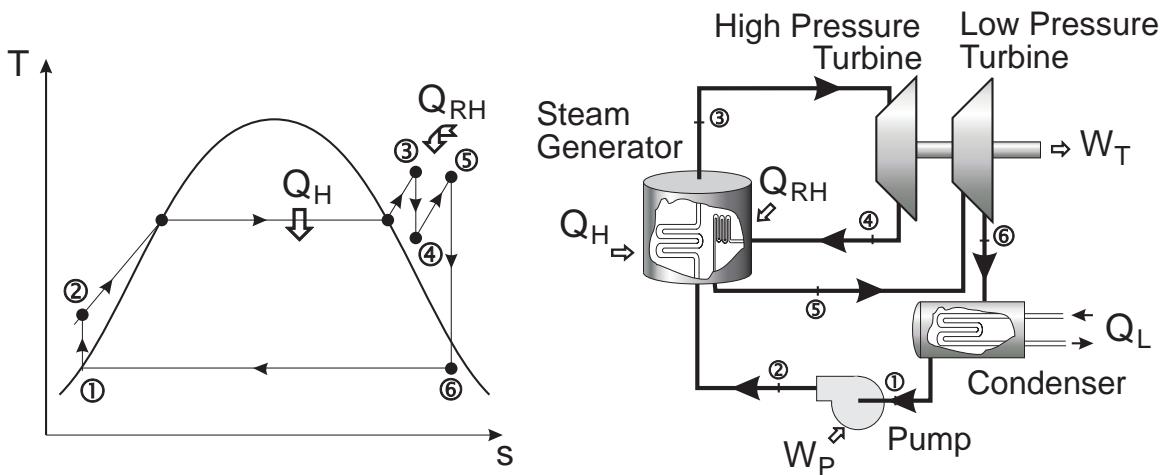
- this is why we have a condenser
 - the pressure at the exit of the turbine can be less than atmospheric pressure
 - the closed loop of the condenser allows us to use treated water on the cycle side
 - but if the pressure is less than atmospheric pressure, air can leak into the condenser, preventing condensation

3. INCREASED T_H BY ADDING SUPERHEAT:


- the average temperature at which heat is supplied in the boiler can be increased by superheating the steam
 - dry saturated steam from the boiler is passed through a second bank of smaller bore tubes within the boiler until the steam reaches the required temperature

The advantage is

$$\eta = \frac{W_{\text{net}} \uparrow}{Q_H \uparrow} \text{ overall } \uparrow$$


The value of \bar{T}_H , the mean temperature at which heat is added, increases, while \bar{T}_L remains constant. Therefore the efficiency increases.

- the quality of the turbine exhaust increases, hopefully where $x > 0.9$
- with sufficient superheating the turbine exhaust can fall in the superheated region.

Rankine Cycle with Reheat

- the wetness at the exhaust of the turbine should be no greater than 10% - this can result in physical erosion of the turbine blades
- but high boiler pressures are required for high efficiency - tends to lead to a high wetness ratio
- to improve the exhaust steam conditions, the steam can be reheated with the expansion carried out in two steps

- the temperature of the steam entering the turbine is limited by metallurgical constraints
- modern boilers can handle up to 30 MPa and a maximum temperature of $T_{max} \approx 650 \text{ }^{\circ}\text{C}$.
- newer materials, such as ceramic blades can handle temperatures up to $750 \text{ }^{\circ}\text{C}$.

Rankine Cycle with Regeneration

- Carnot cycle has efficiency: $\eta = 1 - T_L/T_H$
 - add Q_H at as high a T_H as possible
 - reject Q_L at as low a T_L as possible
- the Rankine cycle can be used with a **Feedwater Heater** to heat the high pressure sub-cooled water at the pump exit to the saturation temperature
 - most of the heat addition (Q_H) is done at high temperature

Feedwater Heaters

There are two different types of feedwater heaters

1. **OPEN FWH:** the streams mix \rightarrow high temperature steam with low temperature water at constant pressure
2. **CLOSED FWH:** a heat exchanger is used to transfer heat between the two streams but the streams do *not* mix. The two streams can be maintained at different pressures.

1. OPEN FWH:

- working fluid passes isentropically through the turbine stages and pumps
- steam enters the first stage turbine at state 1 and expands to state 2 - where a fraction of the total flow is bled off into an open feedwater heater at P_2
- the rest of the steam expands into the second stage turbine at state point 3 - this portion of the fluid is condensed and pumped as a saturated liquid to the FWH at P_2
- a single mixed stream exists the FWH at state point 6

Analysis:

- we must determine the mass flow rates through each of the components.
By performing an mass balance over the turbine

$$\dot{m}_2 + \dot{m}_3 = \dot{m}_1 \quad (1)$$

If we normalize Eq. (1) with respect the total mass flow rate \dot{m}_1

$$\frac{\dot{m}_2}{\dot{m}_1} + \frac{\dot{m}_3}{\dot{m}_1} = 1 \quad (2)$$

Let the flow at state point 2 be

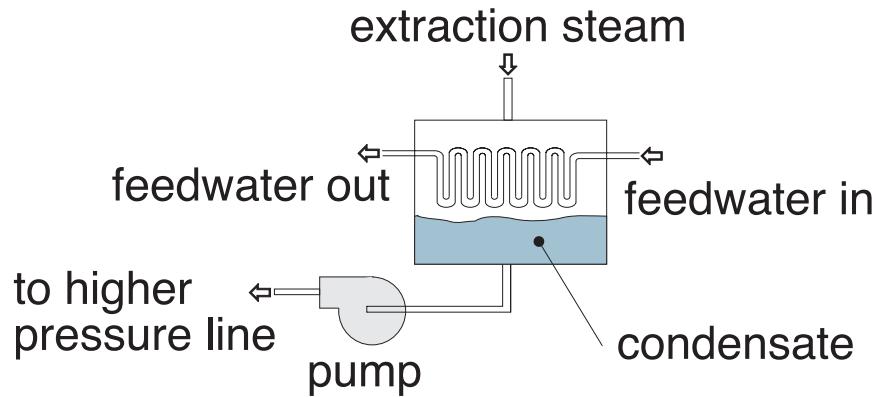
$$y = \frac{\dot{m}_2}{\dot{m}_1}$$

Therefore

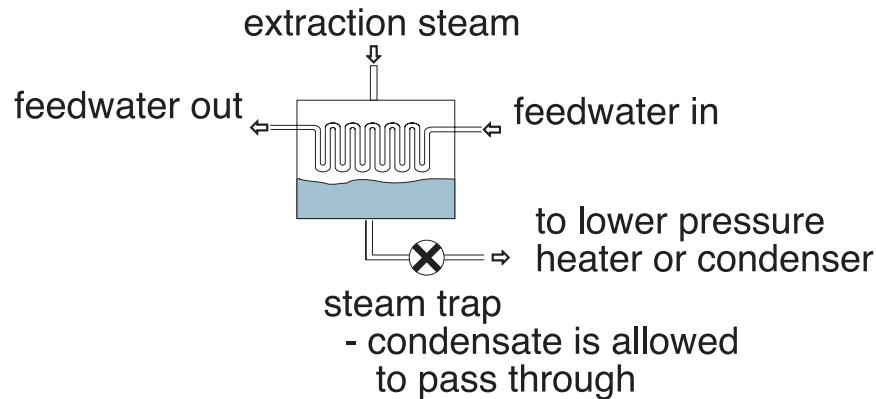
$$\frac{\dot{m}_3}{\dot{m}_1} = 1 - y \quad (3)$$

Assuming no heat loss at the FWH, establish an energy balance across the FWH

$$y h_2 + (1 - y) h_5 = 1 \cdot h_6$$

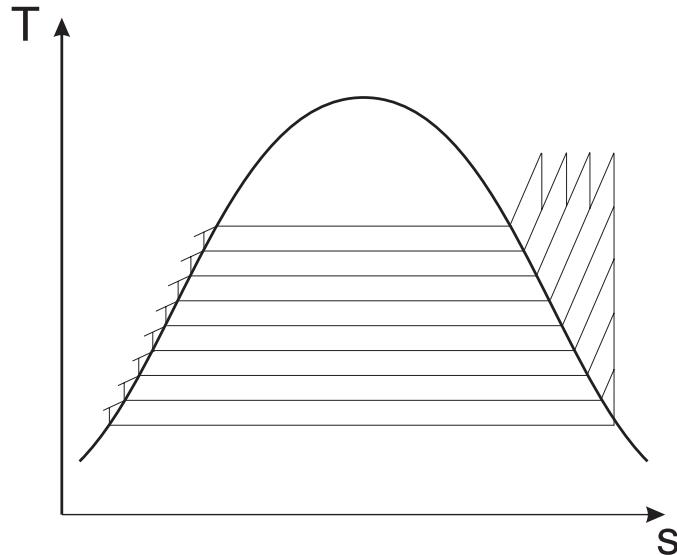

$$y = \frac{h_6 - h_5}{h_2 - h_5} = \frac{\dot{m}_2}{\dot{m}_1}$$

and


$$1 - y = \frac{\dot{m}_3}{\dot{m}_1}$$

2. CLOSED FWH:

- two variations exist
 - pump the condensate back to the high pressure line


- (b)
 - a steam trap is inserted in the condensed steam line that allows only liquid to pass
 - liquid is passed to a low pressure region such as the condenser or a low pressure heater

- the incoming feedwater does not mix with the extracted steam
 - both streams flow separately through the heater
 - the two streams can have different pressures

Other Topics

“IDEAL” RANKINE CYCLE:

- too expensive to build
- requires multiple reheat and regeneration cycles
- approaches Carnot efficiency

TOPPING CYCLE (BINARY CYCLE):

- involves two Rankine cycles running in tandem with different working fluids such as mercury and water
- why:
 - typically a boiler will supply energy at $1300 - 1400 \text{ }^{\circ}\text{C}$
 - but $T_{critical}$ for water is $374.14 \text{ }^{\circ}\text{C}$
 - * most energy is absorbed below this temperature
 - * high ΔT between the boiler source and the water leads to a major source of irreversibilities
 - $T_{critical}$ for mercury is about $1500 \text{ }^{\circ}\text{C}$
 - * no need for superheating
 - combine the large enthalpy of evaporation of water at low temperatures with the advantages of mercury at high temperatures
 - in addition, the mercury dome leads to a high quality at the exit of the turbine