Brayton Cycle

Reading Problems
8-8 — 8-10 8-76, 8-91, 8-92, 8-107, 8-141

Open Cycle Gas Turbine Engines
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e after compression, air enters a combustion chamber into which fuel isinjected
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e theresulting products of combustion expand and drive the turbine
e combustion products are discharged to the atmosphere

e compressor power requirements vary from 40-80% of the power output of the turbine (re-
mainder is net power output), i.e. back work ratio=0.4 — 0.8

e high power requirement is typical when gas is compressed because of the large specific
volume of gasesin comparison to that of liquids

Idealized Air Standard Brayton Cycle

e closed loop
e constant pressure heat addition and rejection
e ideal gaswith constant specific heats
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Brayton Cycle Efficiency

The Brayton cycle efficiency can be written as

n=const. E Whet = W1~ We
@

n=1— (rp) "M/

where we define the pressure ratio as:
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Maximum Pressure Ratio

Given that the maximum and minimum temperature can be prescribed for the Brayton cycle, a
change in the pressure ratio can result in a change in the work output from the cycle.
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The maximum temperature in the cycle (73) is limited by metallurgical conditions because the
turbine blades cannot sustain temperatures above 1300 K. Higher temperatures (up to 1600 K can
be obtained with ceramic turbine blades). The minimum temper atureisset by the air temperature
at theinlet to the engine.



Brayton Cycle with Reheat
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e T3 islimited dueto metallurgical constraints
e excessair isextracted and fed into a second stage combustor and turbine

e turbine outlet temperature isincreased with reheat (I > T,), therefore potential for regen-
eration is enhanced

¢ When reheat and regeneration are used together the thermal efficiency can increase signifi-
cantly



Compression with Intercooling
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¢ the work required to compress in a steady flow device can be reduced by compressing in
stages

e cooling the gas reduces the specific volume and in turn the work required for compression

e by itself compression with intercooling does not provide a significant increase in the effi-
ciency of a gas turbine because the temperature at the combustor inlet would require addi-
tional heat transfer to achieve the desired turbine inlet temperature

e but the lower temperature at the compressor exit enhances the potential for regeneration i.e.
alarger AT acrossthe heat exchanger



Brayton Cycle with Regeneration
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e aregenerator (heat exchanger) isused to reduce the fuel consumption to provide the required
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o the efficiency with aregenerator can be determined as:
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Regenerator Effectiveness
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Typical values of effectivenessare < 0.7

Repeated intercooling, reheating and regeneration will provide a system that approximates the

T
Ericsson Cycle which has Carnot efficiency (n =1- T—L>
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Brayton Cycle With Intercooling, Reheating and Regener ation
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Compressor and Turbine Efficiencies
I sentropic Efficiencies
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Given the turbine and compressor efficiencies and the maximum (73) and the minimum (77;) tem-
peratures in the process, find the cycle efficiency (ncycte)-

(4)

()
(6)

Calculate T, from the isentropic relationship,
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Get T3 from (1).
Do the same for T, using (2) and the isentropic relationship.

substitute T, and T in (3) to find the cycle efficiency.



