
Equations of State

Reading Problems
3-6, 3-7, 4-3→ 4-5 3-54, 3-64, 3-80, 4-25, 4-39, 4-42
6-6
7-3, 7-4, 7-7→ 7-10 7-43, 7-116, 7-166, 7-193

Ideal Gas
• When is the ideal gas assumption viable?

– for a low density gas where:

∗ the gas particles take up negligible volume
∗ the intermolecular potential energy between particles is small
∗ particles act independent of one another

– Under what conditions can it be used?

∗ low density
∗ high temperatures - considerably in excess of the saturation region
∗ at very low pressures

• for any gas whose equation of state is exactly

Pv = RT

the specific internal energy depends only on temperature

u = u(T )

• the specific enthalpy is given by

h = u + Pv

where

h(T ) = u(T ) + RT

Note: Since u = u(T ), and R is a constant, enthalpy is only a function of temperature.
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• for a ideal gas

cv =
du

dT
⇒ cv = cv(T ) only

cp =
dh

dT
⇒ cp = cp(T ) only

From the equation for enthalpy,

RT = h(T )− u(T )

If we differentiate with respect to T

R =
dh

dT
−

du

dT

R = cp − cv

Is Water Vapor an Ideal Gas?

• Figure 3-49 can be used to determine the regions where water vapor behaves as an ideal gas

– YES - at pressures below 10 kPa regardless of temperature

– NO - at high pressure

– what about at atmospheric pressure and temperature (Patm ≈ 100 kPa and
Tatm < 50 ◦C)? Figure 3-49 would indicate YES

∗ look at the T − s diagram for water: h ≈ constant for atmospheric conditions
∗ for an ideal gas: h = h(T ) - since h only varies with respect to T , it must behave

like an ideal gas

In Summary
For an ideal gas with constant cp and cv

Pv = RT

u2 − u1 = cv(T2 − T1)

h2 − h1 = cp(T2 − T1)
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There are 3 forms of a change in entropy as a function of T & v, T & P , and P & v.

s2 − s1 = cv ln
T2

T1

+ R ln
v2

v1

= cp ln
T2

T1

−R ln
P2

P1

= cp ln
v2

v1

+ cv ln
P2

P1

R = cp − cv

Isentropic and Polytropic Processes for Ideal Gases
Gibb’s equation can be written as

Tds = du + Pdv = cvdT + Pdv = 0 (1)

The definition of enthalpy is

h = u + Pv

Taking the derivative yields

dh = du + Pdv︸ ︷︷ ︸
≡T ds

+vdP

dh = Tds + vdP ⇒ Tds = 0 = dh− vdP

cpdT − vdP = 0 (2)

Equating Eqs. (1) and (2) through the dT term gives

dP

P
= −

cp

cv

dv

v
(3)
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Integrating (3) from its initial state to a final state

ln P |21 = −k ln v|21

ln P1 − ln P2 = k[ln v2 − ln v1]

ln

(
P1

P2

)
= ln

(
v2

v1

)k

take exp of each side

P2v
k
2 = P1v

k
1

where k =
cp

cv

The product of P · vk remains constant for an ideal gas when:

• specific heats are constant

• the gas undergoes an isentropic process→ reversible + adiabatic

Combining this result with the ideal gas equation of state

T2

T1

=

(
v1

v2

)k−1

=

(
P2

P1

)(k−1)/k
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Relative Pressure and Relative Specific Volume
• typically we assume specific heat to be constant with respect to temperature

• but when temperature swings are significant, this assumption can lead to inaccuracies, i.e.

T (K) cp (kJ/kg ·K) % difference

300 1.0057
1000 1.1417 13.5
2500 1.688 67.8

• the relative pressure and relative volume tables (C&B Table A-17), provide an accurate
way of including the temperature effects on specific heat for ideal gases during isentropic
processes

• note: the specific heat ratio term given by k = cp/cv will also be influenced by temperature

• Procedure:

– given T1, P1 and P2 for an isentropic process

– determine Pr1 at T1 from Table A-17

– calculate Pr2, where(
P2

P1

)
s=const

=
Pr2

Pr1

– read T2 from Table A-17 for the calculated value of Pr2

• use a similar procedure if volume is known instead of pressure, where

(
v2

v1

)
s=const

=
vr2

vr1
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Sign Convention

There are many potential sign conventions that can be used.

Cengel Approach

Heat Transfer: heat transfer to a system is positive and heat transfer from a system is negative.

Work Transfer: work done by a system is positive and work done on a system is negative.

Culham Approach

Anything directed into the system is positive, anything directed out of the system is negative.
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Incompressible Liquids
• a substance whose volume cannot be changed

• no substance is truly incompressible, but this model is good for most liquids and solids

State Postulate

• the number of independent intensive thermodynamic properties is equal to the number of
relevant reversible work modes plus one.

• the “plus one” is for the independent control on energy through heat transfer

• we know that for a simple (has only one work mode), compressible (the work mode is Pdv
work) substance

– 2 thermodynamic properties will fix the rest

∗ list of intensive properties includes, T, u, P, v, s

∗ state postulate says two will fix the rest, i.e. if u and v are known, the equations
of state are

T = T (u, v)

P = P (u, v)

s = s(u, v)

Hence, if the substance is assumed to be incompressible, then its internal energy, for example,
cannot be varied independently by work transfer −→ but it can be varied by heat transfer at
constant volume, i.e. Pdv = 0 since dv = constant. There are no reversible work modes.

In summary

u2 − u1 = c (T2 − T1)

h2 − h1 = (u2 − u1) + v(P2 − P1)

s2 − s1 = c ln(T2/T1)

cp = cv = c
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