

Equations of State

Reading

3-6, 3-7, 4-3 → 4-5

6-6

7-3, 7-4, 7-7 → 7-10

Problems

3-54, 3-64, 3-80, 4-25, 4-39, 4-42

7-43, 7-116, 7-166, 7-193

Ideal Gas

- When is the ideal gas assumption viable?
 - for a low density gas where:
 - * the gas particles take up negligible volume
 - * the intermolecular potential energy between particles is small
 - * particles act independent of one another
 - Under what conditions can it be used?
 - * low density
 - * high temperatures - considerably in excess of the saturation region
 - * at very low pressures
- for any gas whose equation of state is exactly

$$Pv = RT$$

the specific internal energy depends only on temperature

$$u = u(T)$$

- the specific enthalpy is given by

$$h = u + Pv$$

where

$$h(T) = u(T) + RT$$

Note: Since $u = u(T)$, and R is a constant, enthalpy is only a function of temperature.

- for a ideal gas

$$c_v = \frac{du}{dT} \Rightarrow c_v = c_v(T) \text{ only}$$

$$c_p = \frac{dh}{dT} \Rightarrow c_p = c_p(T) \text{ only}$$

From the equation for enthalpy,

$$RT = h(T) - u(T)$$

If we differentiate with respect to T

$$R = \frac{dh}{dT} - \frac{du}{dT}$$

$R = c_p - c_v$

Is Water Vapor an Ideal Gas?

- Figure 3-49 can be used to determine the regions where water vapor behaves as an ideal gas
 - YES - at pressures below 10 kPa regardless of temperature
 - NO - at high pressure
 - what about at atmospheric pressure and temperature ($P_{atm} \approx 100 \text{ kPa}$ and $T_{atm} < 50^\circ\text{C}$)? Figure 3-49 would indicate YES
 - * look at the $T - s$ diagram for water: $h \approx \text{constant}$ for atmospheric conditions
 - * for an ideal gas: $h = h(T)$ - since h only varies with respect to T , it must behave like an ideal gas

In Summary

For an ideal gas with constant c_p and c_v

$$Pv = RT$$

$$u_2 - u_1 = c_v(T_2 - T_1)$$

$$h_2 - h_1 = c_p(T_2 - T_1)$$

There are 3 forms of a change in entropy as a function of $T \& v$, $T \& P$, and $P \& v$.

$$\begin{aligned}
 s_2 - s_1 &= c_v \ln \frac{T_2}{T_1} + R \ln \frac{v_2}{v_1} \\
 &= c_p \ln \frac{T_2}{T_1} - R \ln \frac{P_2}{P_1} \\
 &= c_p \ln \frac{v_2}{v_1} + c_v \ln \frac{P_2}{P_1}
 \end{aligned}$$

$$R = c_p - c_v$$

Isentropic and Polytropic Processes for Ideal Gases

Gibb's equation can be written as

$$Tds = du + Pdv = c_v dT + Pdv = 0 \quad (1)$$

The definition of enthalpy is

$$h = u + Pv$$

Taking the derivative yields

$$dh = \underbrace{du + Pdv}_{\equiv Tds} + v dP$$

$$dh = Tds + v dP \Rightarrow Tds = 0 = dh - v dP$$

$c_p dT - v dP = 0$

(2)

Equating Eqs. (1) and (2) through the dT term gives

$$\frac{dP}{P} = -\frac{c_p}{c_v} \frac{dv}{v} \quad (3)$$

Integrating (3) from its initial state to a final state

$$\begin{aligned}
 \ln P|_1^2 &= -k \ln v|_1^2 \\
 \ln P_1 - \ln P_2 &= k[\ln v_2 - \ln v_1] \\
 \ln \left(\frac{P_1}{P_2} \right) &= \ln \left(\frac{v_2}{v_1} \right)^k \\
 &\text{take exp of each side} \\
 P_2 v_2^k &= P_1 v_1^k
 \end{aligned}$$

where $k = \frac{c_p}{c_v}$

The product of $P \cdot v^k$ remains constant for an ideal gas when:

- specific heats are constant
- the gas undergoes an isentropic process \rightarrow reversible + adiabatic

Combining this result with the ideal gas equation of state

$$\boxed{\frac{T_2}{T_1} = \left(\frac{v_1}{v_2} \right)^{k-1} = \left(\frac{P_2}{P_1} \right)^{(k-1)/k}}$$

Relative Pressure and Relative Specific Volume

- typically we assume specific heat to be constant with respect to temperature
- *but* when temperature swings are significant, this assumption can lead to inaccuracies, i.e.

T (K)	c_p (kJ/kg · K)	% difference
300	1.0057	
1000	1.1417	13.5
2500	1.688	67.8

- the relative pressure and relative volume tables (C&B Table A-17), provide an accurate way of including the temperature effects on specific heat for ideal gases during isentropic processes
- note: the specific heat ratio term given by $k = c_p/c_v$ will also be influenced by temperature

- **Procedure:**

- given T_1, P_1 and P_2 for an isentropic process
- determine P_{r1} at T_1 from Table A-17
- calculate P_{r2} , where

$$\left(\frac{P_2}{P_1}\right)_{s=const} = \frac{P_{r2}}{P_{r1}}$$

- read T_2 from Table A-17 for the calculated value of P_{r2}
- use a similar procedure if volume is known instead of pressure, where

$$\left(\frac{v_2}{v_1}\right)_{s=const} = \frac{v_{r2}}{v_{r1}}$$

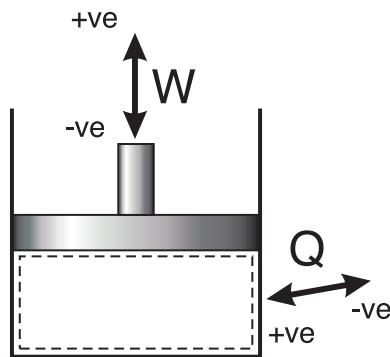
Sign Convention

There are many potential sign conventions that can be used.

Cengel Approach

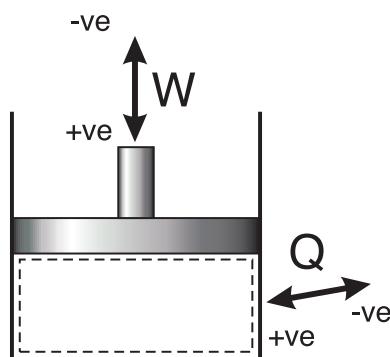
Heat Transfer: heat transfer to a system is positive and heat transfer from a system is negative.

Work Transfer: work done by a system is positive and work done on a system is negative.



Culham Approach

Anything directed into the system is positive, anything directed out of the system is negative.



Incompressible Liquids

- a substance whose volume cannot be changed
- no substance is truly incompressible, but this model is good for most liquids and solids

State Postulate

- the number of independent intensive thermodynamic properties is equal to the number of relevant reversible work modes plus one.
- the “plus one” is for the independent control on energy through heat transfer
- we know that for a *simple* (has only one work mode), *compressible* (the work mode is Pdv work) substance
 - 2 thermodynamic properties will fix the rest
 - * list of intensive properties includes, T, u, P, v, s
 - * state postulate says two will fix the rest, i.e. if u and v are known, the equations of state are

$$T = T(u, v)$$

$$P = P(u, v)$$

$$s = s(u, v)$$

Hence, if the substance is assumed to be incompressible, then its internal energy, for example, cannot be varied independently by work transfer \rightarrow but it can be varied by heat transfer at constant volume, i.e. $Pdv = 0$ since $dv = \text{constant}$. There are no reversible work modes.

In summary

$$u_2 - u_1 = \bar{c} (T_2 - T_1)$$

$$h_2 - h_1 = (u_2 - u_1) + v(P_2 - P_1)$$

$$s_2 - s_1 = \bar{c} \ln(T_2/T_1)$$

$$c_p = c_v = \bar{c}$$