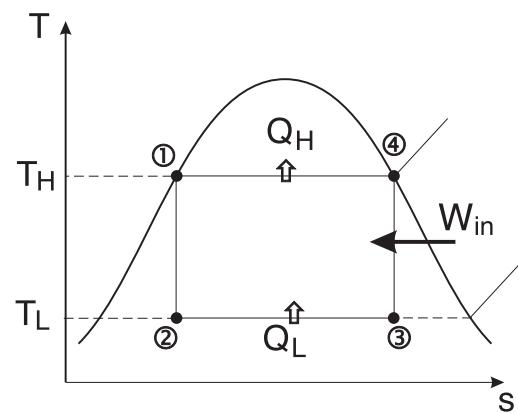
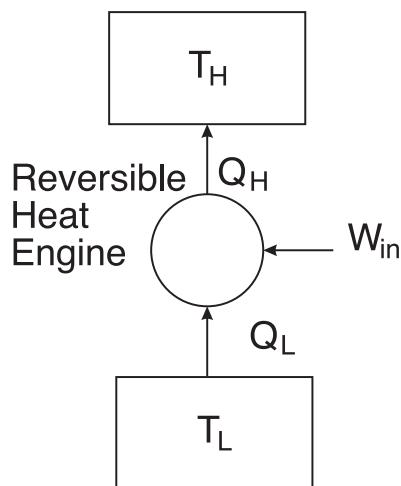


Refrigeration Cycle

Reading
11-1 → 11-7, 11-9



Problems
11-11, 11-46, 11-49, 11-103

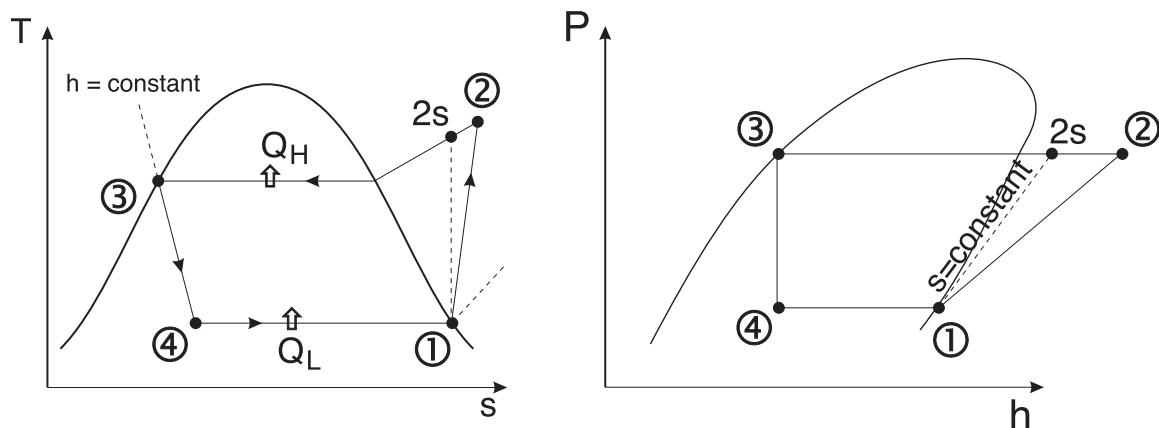
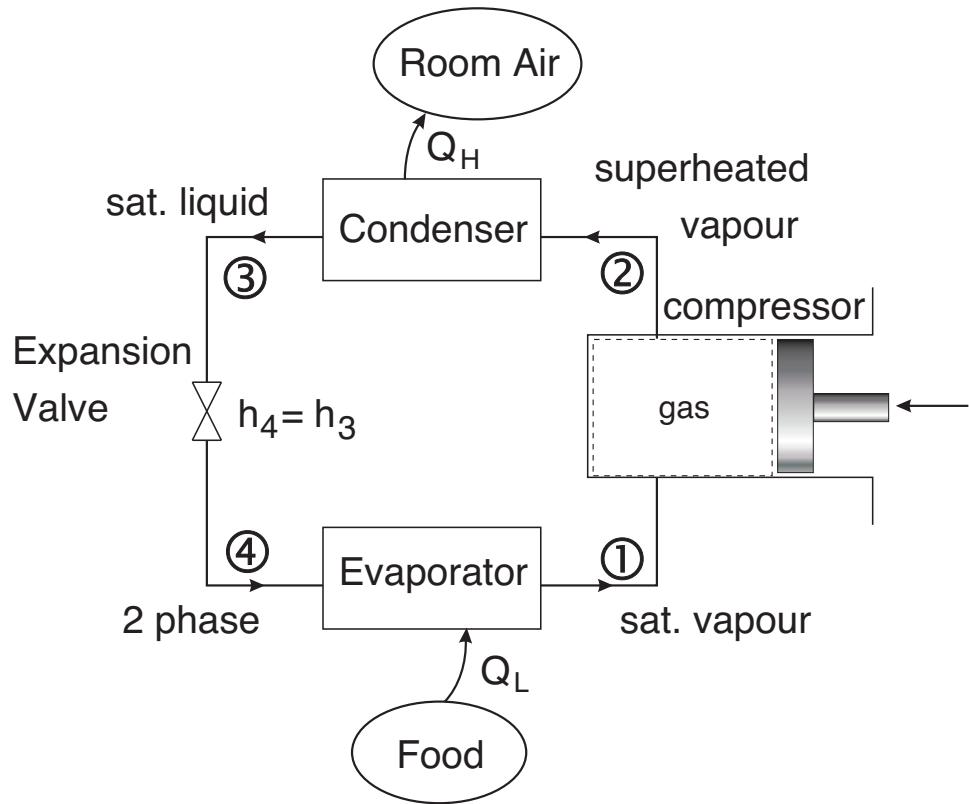
Definitions

- the 1st law of thermodynamics tells us that heat flow occurs from a hot source to a cooler sink, therefore, energy in the form of work must be added to the process to get heat to flow from a low temperature region to a hot temperature region.
- refrigeration cycles may be classified as
 - vapour compression
 - gas compression
- refrigerators and heat pumps have a great deal in common. The primary difference is in the manner in which heat is utilized.

– **Refrigerator** $\xrightarrow[\text{takes heat from}]{\text{C}}$ $\rightarrow \xrightarrow[\text{transfers to}]{\text{H}}$

– **Heat Pump** $\xrightarrow[\text{takes heat from}]{\text{C}}$ $\rightarrow \xrightarrow[\text{transfers to}]{\text{H} \uparrow}$

The coefficient of performance (COP) is given by



$$COP = \frac{benefit}{cost}$$

where the benefit for a refrigeration process is the cooling load given as Q_L . This is the net benefit, i.e. heat is removed from the cold space. For a heat pump, the benefit is the heat added to the hot space, i.e. Q_H .

$$\begin{aligned} COP_{refrig} &= \frac{Q_L}{W_{in}} = \frac{Q_L}{Q_H - Q_L} = \frac{1}{\frac{Q_H}{Q_L} - 1} = \frac{1}{\frac{T_H(s_4 - s_1)}{T_L(s_3 - s_2)} - 1} \\ &= \frac{1}{\frac{T_H}{T_L} - 1} = \frac{T_L}{T_H - T_L} \end{aligned}$$

$$\begin{aligned} COP_{heat\ pump} &= \frac{Q_H}{W_{in}} = \frac{Q_H}{Q_H - Q_L} = \frac{1}{1 - \frac{Q_L}{Q_H}} = \frac{1}{1 - \frac{T_L}{T_H}} \\ &= \frac{T_H}{T_H - T_L} \end{aligned}$$

Vapour Compression Refrigeration Cycle

Refrigeration Process

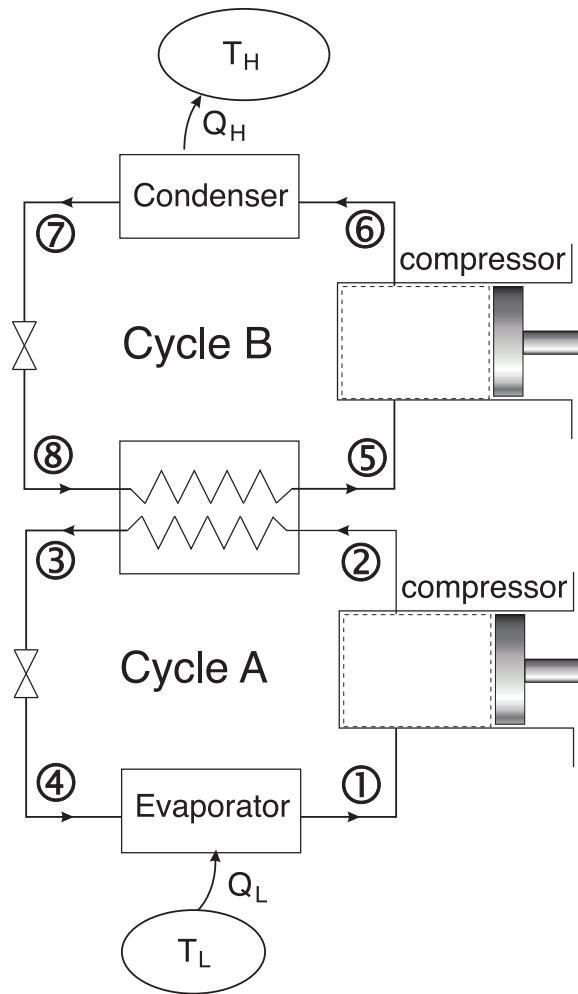
Process	Description
1-2s:	A reversible, adiabatic (isentropic) compression of the refrigerant. The saturated vapour at state 1 is superheated to state 2. $\Rightarrow w_c = h_{2s} - h_1$
2s-3:	An internally, reversible, constant pressure heat rejection in which the working substance is desuperheated and then condensed to a saturated liquid at 3. During this process, the working substance rejects most of its energy to the condenser cooling water. $\Rightarrow q_H = h_{2s} - h_3$
3-4	An irreversible throttling process in which the temperature and pressure decrease at constant enthalpy. $\Rightarrow h_3 = h_4$
4-1	An internally, reversible, constant pressure heat interaction in which the working fluid is evaporated to a saturated vapour at state point 1. The latent enthalpy necessary for evaporation is supplied by the refrigerated space surrounding the evaporator. The amount of heat transferred to the working fluid in the evaporator is called the <u>refrigeration load</u> . $\Rightarrow \underline{q_L = h_1 - h_4}$

Common Refrigerants

There are several fluorocarbon refrigerants that have been developed for use in VCRC.

R11

R12	CCl_2F_2	dichlorofluoromethane - used for refrigeration systems at higher temperature levels - typically, water chillers and air conditioning
R22	$CHClF_2$	has less chlorine, a little better for the environment than R12 - used for lower temperature applications
R134a	CFH_2CF_3	tetrafluorethane - no chlorine - went into production in 1991 - replacement for R12
R141b	$C_2H_3FCl_2$	dichlorofluoroethane
Ammonia	NH_3	corrosive and toxic - used in absorption systems
R744	CO_2	behaves in the supercritical region - low efficiency
R290	propane	combustible

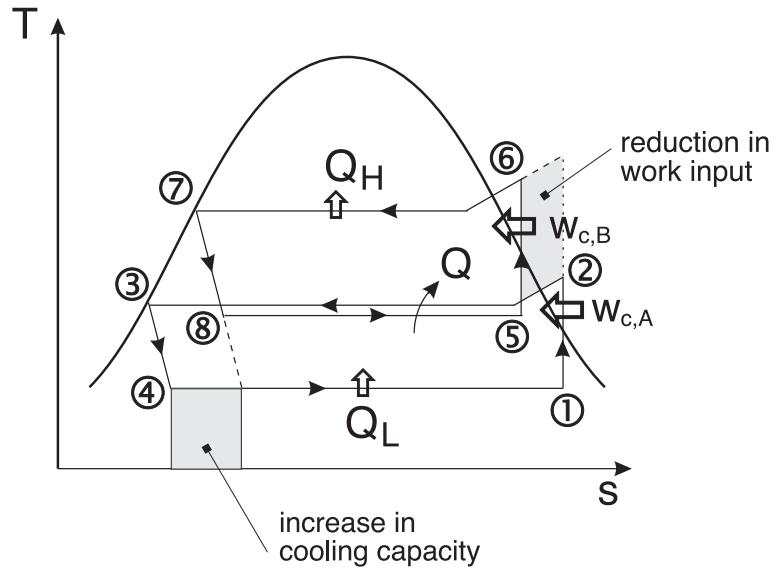


Designation	Chemical Formula	Ozone Depletion Potential ¹	Global Warming Potential ²
<i>Ozone Depleting & Global Warming Chemicals</i>			
CFC-11	<i>CCl₃F</i>	1	3,400
CFC-12	<i>CCl₂F₂</i>	0.89	7,100
CFC-13	<i>CClF₃</i>		13,000
CFC-113	<i>C₂F₃Cl₃</i>	0.81	4,500
CFC-114	<i>C₂F₄Cl₂</i>	0.69	7,000
CFC-115	<i>C₂F₅Cl₁</i>	0.32	7,000
Halon-1211	<i>CF₂ClBr</i>	2.2-3.5	
Halon-1301	<i>CF₃Br</i>	8-16	4,900
Halon-2402	<i>C₂F₄Br₂</i>	5-6.2	
carbon tetrachloride	<i>CCl₄</i>	1.13	1,300
methyl chloroform	<i>CH₃CCl₃</i>	0.14	
nitrous oxide	<i>N₂O</i>		270
<i>Ozone Depleting & Global Warming Chemicals - Class 2</i>			
HCFC-22	<i>CHF₂Cl</i>	0.048	1,600
HCFC-123	<i>C₂HF₃Cl₂</i>	0.017	90
HCFC-124	<i>C₂HF₄Cl</i>	0.019	440
HCFC-125	<i>C₂HF₅</i>	0.000	3,400
HCFC-141b	<i>C₂H₃FCl₂</i>	0.090	580
HCFC-142b	<i>C₂H₃F₂Cl</i>	0.054	1800
<i>Global Warming, non-Ozone Depleting Chemicals</i>			
carbon dioxide	<i>CO₂</i>	0	1
methane	<i>CH₄</i>	0	11
HFC-125	<i>CHF₂CF₃</i>	0	90
HFC-134a	<i>CFH₂CF₃</i>	0	1,000
HFC-152a	<i>CH₃CHF₂</i>	0	2,400
perfluorobutane	<i>C₄F₁₀</i>	0	5,500
perfluoropentane	<i>C₅F₁₂</i>	0	5,500
perfluorohexane	<i>C₆F₁₄</i>	0	5,100
perfluorotributylamine	<i>N(C₄F₉)₃</i>	0	4,300

1 - relative to R11

2 - relative to CO₂

Cascade Refrigeration System



- two or more vapour compression refrigeration cycles are combined
- used where a very wide range of temperature between T_L and T_H is required

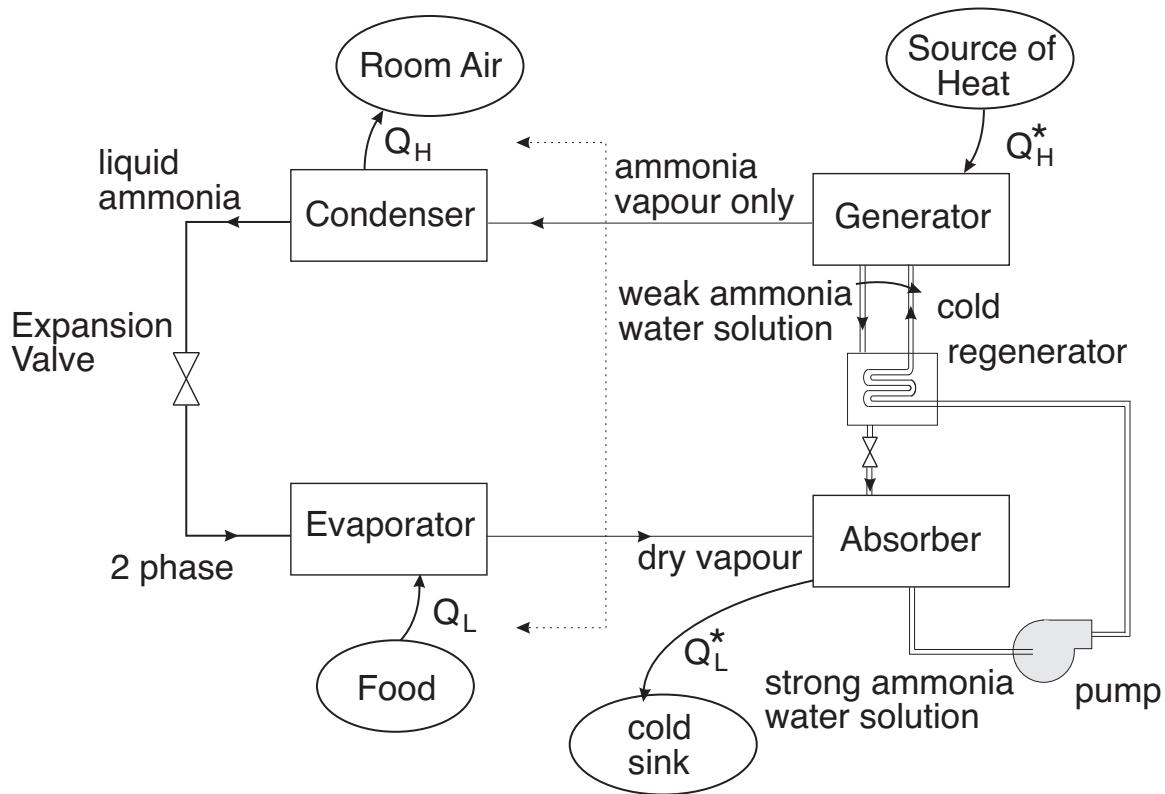
Advantages

- the refrigerants can be selected to have reasonable evaporator and condenser pressures in the two or more temperature ranges

$$COP = \frac{Q_L(\uparrow)}{W_{net}(\downarrow)} \text{ overall}(\uparrow)$$

Absorption Refrigeration System

Differences between an absorption refrigeration system and a VCRC


VCRC

- vapour is compressed between the evaporator and the condenser
- process is driven by work

Absorption RS

- the refrigerant is absorbed by an absorbent material to form a liquid solution
- heat is added to the process to retrieve the refrigerant vapour from the liquid solution
- process is driven by heat

Process

