
Week 8: Lecture 3

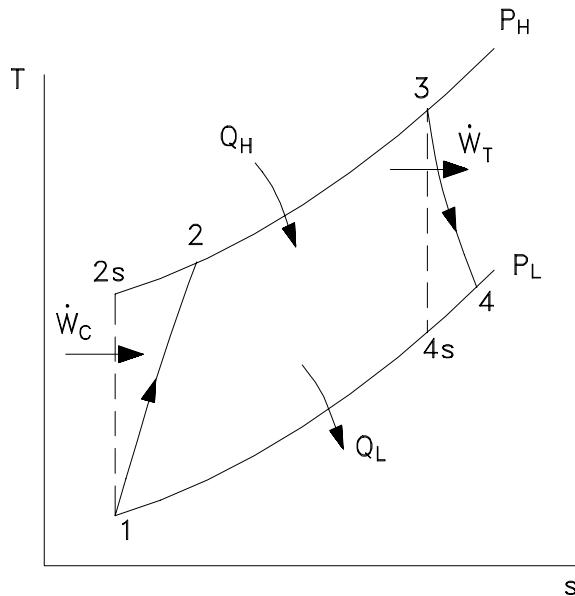
Brayton Cycle with Regeneration

- a regenerator (heat exchanger) is used to reduce the fuel consumption to provide the required \dot{Q}_H
- the efficiency with a regenerator is given by

$$\eta = 1 - \left(\frac{T_{min}}{T_{max}} \right) (r_p)^{\frac{k-1}{k}}$$

- for a given T_{min}/T_{max} , the use of a regenerator above a certain r_p will result in a reduction of η

The regenerator effectiveness can be defined as


$$\epsilon = \frac{\dot{Q}_{reg,actual}}{\dot{Q}_{reg,ideal}}$$

Typical values of effectiveness are ≤ 0.7

Repeated intercooling, reheating and regeneration will provide a system that approximates the Ericsson Cycle which has Carnot efficiency ($\eta = 1 - \frac{T_L}{T_H}$).

Week 8: Lecture 3

Compressor and Turbine Efficiencies

Isentropic Efficiencies

$$(1) \quad \eta_{comp} = \frac{h_{2,s} - h_1}{h_2 - h_1} = \frac{\dot{q}_p (T_2, s - T_1)}{\dot{q}_p (T_2 - T_1)}$$

$$(2) \quad \eta_{turb} = \frac{h_3 - h_{4,s}}{h_3 - h_4} = \frac{\dot{q}_p (T_3 - T_4)}{\dot{q}_p (T_3 - T_{4,s})}$$

$$(3) \quad \eta_{cycle} = \frac{W_{net}}{Q_H} = \frac{Q_H - Q_L}{Q_H} = 1 - \frac{Q_L}{Q_H} = 1 - \frac{\dot{q}_p (T_4 - T_1)}{\dot{q}_p (T_3 - T_2)}$$

Given the turbine and compressor efficiencies and the maximum (T_3) and the minimum (T_1) temperatures in the process, find the cycle efficiency (η_{cycle}).

(4) Calculate T_{2s} from the isentropic relationship,

$$\frac{T_{2,s}}{T_1} = \left(\frac{P_2}{P_1} \right)^{(k-1)/k}.$$

Get T_2 from (1).

(5) Do the same for T_4 using (2) and the isentropic relationship.

(6) substitute T_2 and T_4 in (3) to find the cycle efficiency.