


## Week 9: Lecture 1

## Gas Turbines for Aircraft Propulsion

- gas turbines are well suited to aircraft propulsion because of their favorable power-to-weight ratio
- the exhaust pressure of the turbine will be greater than that of the surroundings
- since the gases leave at a high velocity, the change in momentum that the gas undergoes gives a thrust to the aircraft
- gases are expanded in the turbine to a pressure where the turbine work is just equal to the compressor work plus some auxiliary power for pumps and generators i.e. the net work output is zero
- typically operate at higher pressure ratios, often in the range of 10 to 25

## Conservation of Momentum



$$\frac{d(Mom)_{x,cv}}{dt} = (Mom)_{x,in} - (Mom)_{x,out} + \sum F_x$$

$$\text{for steady flow} \Rightarrow \frac{d}{dt} = 0 \text{ and}$$

$$\dot{m}_{fuel} \ll \dot{m}_i \Rightarrow \dot{m}_i \approx \dot{m}_e$$

Therefore

$$F_T = \dot{m}_e v_e^* - \dot{m}_i v_i^* - \underbrace{P_{atm}(A_i - A_e)}_{negligible}$$

$$= \dot{m}_i (v_e^* - v_i^*)$$

**Week 9: Lecture 1**

$$\text{Specific Impulse: } I = \frac{F_T}{\dot{m}_i} = v_e^* - v_i^*$$

$$\text{Propulsive Power: } \dot{W}_T = F_T v_i^* \approx \dot{m}_i (v_e^* - v_i^*) v_i^*$$

$$\text{Propulsive Efficiency: } \eta = \frac{\dot{W}_T}{\dot{Q}_{in}}$$

Since the net work output is zero, we must define the propulsive efficiency as propulsive power over the heat flow rate in the combustion process. This then becomes a measure of how efficiently the energy released during the combustion process is converted to propulsive energy.