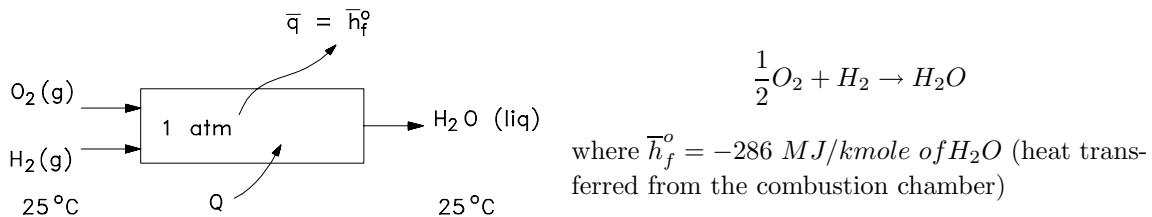


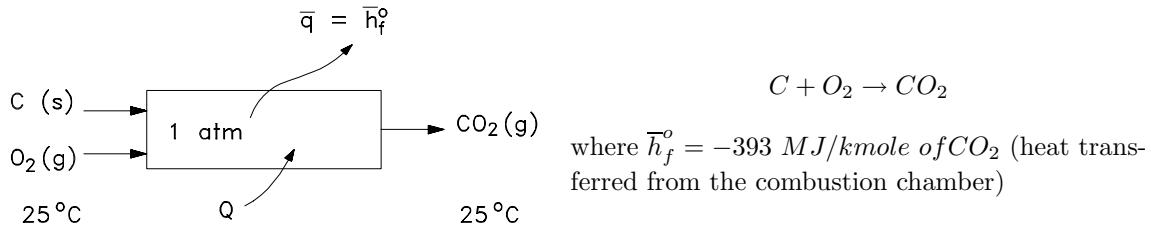
Week 12: Lecture 1

Conservation of Energy for Reacting Systems

Enthalpy of Formation

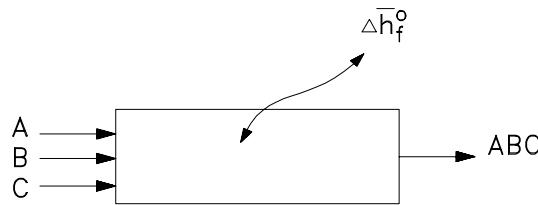

- previous calculations involving enthalpy were all based on differences and the reference used to determine enthalpy did not matter
- when chemical reactions occur, reactants disappear and products are formed → differences cannot be calculated for all substances involved
- it is necessary to establish a common base to account for differences in composition
- the enthalpy datum for reacting systems is set to zero at standard temperature and pressure
 - $T_{ref} = 25^\circ C \rightarrow 298 K$
 - $P_{ref} = 1 atm$
- $h = 0$ assigned to elements in their most stable form i.e. $O_2, N_2, C, etc.$
- the enthalpy of formation is defined as:
 - the energy released or absorbed when a compound is formed from its stable elements at STP

$$\delta\bar{h}_f^o = \bar{h}_{comp}^o - \sum \bar{n}_i \bar{h}_i^o \quad (kJ/kmole)$$


where

\bar{n}_i = # of moles of i'th elemental substance in
forming a single mole of compound (unitless)

Consider the following reactions taking place at atmospheric pressure, such that $T_{prod} = T_{react} = 298 K$


Week 12: Lecture 1

These reactions are called formation reactions because a substance is formed from its elements in their respective natural states at STP

\bar{q} = standard heats of formation

\bar{h}_f^o = enthalpy of formation

$$\delta \bar{h}_f^o = \bar{h}_{comp}^o - \sum \bar{n}_i \bar{h}_i^o \quad (kJ/kmole)$$

An energy balance gives

$$\underbrace{a\bar{h}_A^o + b\bar{h}_B^o + c\bar{h}_C^o}_{\text{generally } 0} + \delta \bar{h}_f^o \rightarrow \bar{h}_{ABC}^o$$

If

$\bar{h}_f^o > 0$ - endothermic

$\bar{h}_f^o < 0$ - exothermic