

Week 3: Lecture 3

The General Exergy Equation

From the 1st law

$$\frac{dE_{cv}}{dt} = \dot{W}_{in} - \dot{W}_{out} + \dot{Q}_0 + \dot{Q}_1 - \dot{Q}_2 + [\dot{m}(e + Pv)]_{in} - [\dot{m}(e + Pv)]_{out}$$

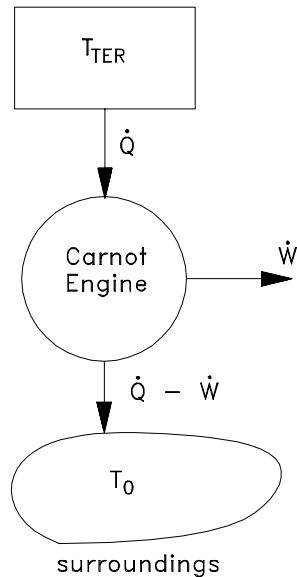
From the 2nd law

$$\frac{dS_{cv}}{dt} = \left(\dot{m}s + \frac{\dot{Q}_0}{T_0} + \frac{\dot{Q}_1}{T_1} \right)_{in} - \left(\dot{m}s + \frac{\dot{Q}_2}{T_2} \right)_{out} + \dot{P}_s$$

Which leads to the generalized exergy equation

$$\begin{aligned} \frac{d\Phi_{CV}}{dt} &= P_0 \frac{dV_{CV}}{dt} + \left[\dot{W} + \dot{m}\psi + \dot{Q} \left(1 - \frac{T_0}{T_{TER}} \right) \right]_{in} \\ &\quad - \left[\dot{W} + \dot{m}\psi + \dot{Q} \left(1 - \frac{T_0}{T_{TER}} \right) \right]_{out} - \dot{I} \end{aligned}$$

Week 3: Lecture 3


where

$$\dot{I} = T_0 \dot{\mathcal{P}}_s = \text{exergy destruction rate}$$

$$\Phi_{CV} = [(E - E_0) + P_0(V - V_0) - T_0(S - S_0)]_{CV} = \text{nonflow exergy}$$

$$\psi = (h - h_0) - T_0(s - s_0) + \frac{1}{2}[(v^*)^2 - (v_0^*)^2] + g(z - z_0) = \text{flow exergy}$$

$$\dot{W}_{useful} = \underbrace{(\dot{W}_{in} - \dot{W}_{out})}_{\dot{W}_{actual}} - \left(P_0 \frac{dV_{CV}}{dt} \right)$$

Notice that:

$$\eta = \frac{\dot{W}}{\dot{Q}} = 1 - \frac{T_0}{T_{TER}}$$

Therefore

$$\dot{W} = \underbrace{\dot{Q} \left(1 - \frac{T_0}{T_{TER}} \right)}_{\text{appears in the general exergy equation}}$$

This term represents the work potential (exergy) of a given TER with respect to the surroundings (dead state) at T_0 .