

Non-Reacting Gas Mixtures

Reading

12-1 → 12-3

13-1 → 13-7

Problems

12-13, 12-33, 12-36, 12-49

13-14, 13-15, 13-68, 13-73, 13-77, 13-97, 13-106

Introduction

- homogeneous gas mixtures are frequently treated as a single compound rather than many individual constituents
- the individual properties of inert gases tend to be submerged, such that the gas behaves as a single pure substance
- equations can be derived to express the properties of mixtures in terms of the properties of their individual constituents

Formulations

- the total mass of a mixture, m is the sum of the masses of its components

$$m = m_1 + m_2 + \dots + m_j = \sum_{i=1}^j m_i$$

- the relative amounts of the components present in the mixture can be specified in terms of mass fractions

$$Y_i = \frac{m_i}{m} \quad \Rightarrow \quad \sum_{i=1}^j Y_i = 1$$

- the total number of moles in a mixture, n is the sum of the number of moles of each of the components

$$n = n_1 + n_2 + \dots + n_j = \sum_{i=1}^j n_i$$

- the relative amounts of the components present in the mixture can be specified in terms of mole fractions

$$X_i = \frac{n_i}{n} \quad \Rightarrow \quad \sum_{i=1}^j X_i = 1$$

- m_i and n_i are related by the molecular weight \tilde{M}_i

$$m_i = n_i \tilde{M}_i$$

Therefore the total mass is

$$m = \sum_{i=1}^j n_i \tilde{M}_i$$

- the mixture molecular weight can be calculated as a mole fraction average of the component molecular weights

$$\tilde{M} = \frac{m}{n} = \frac{\sum_{i=1}^j n_i \tilde{M}_i}{n} = \sum_{i=1}^j X_i \tilde{M}_i$$

- X_i and Y_i are also related by the molecular weights

$$\frac{Y_i}{X_i} = \frac{(m_i/m)}{(n_i/n)} = \left(\frac{m_i}{n_i}\right) \left(\frac{n}{m}\right) = (\tilde{M}_i) \left(\frac{1}{\tilde{M}}\right)$$

Therefore

$$\frac{Y_i}{X_i} = \frac{\tilde{M}_i}{\tilde{M}} \quad \rightarrow \quad Y_i = X_i \left[\frac{\tilde{M}_i}{\sum_{i=1}^j X_i \tilde{M}_i} \right]$$

P-V-T Relationships for Ideal Gas Mixtures

Amagat Model (law of additive volumes)

- the volume of a mixture is the sum of the volumes that each constituent gas would occupy if each were at the pressure, P and temperature, T , of the mixture

T, P	T, P		T, P
m_A	m_B		$m_C = m_A + m_B$
n_A	n_B	remove → partition	$n_C = n_A + n_B$
V_A	V_B		$V_C = V_A + V_B$

The volume of the gas mixture is equal to the sum of the volumes each gas would occupy if it existed at the mixture temperature and pressure.

$$V = \sum_{i=1}^j V_i$$

Dalton Model (law of additive pressures)

- the pressure of a mixture of gases is the sum of the pressures of its components when each alone occupies the volume of the mixture, V , at the temperature, T , of the mixture

$$\begin{array}{c} V, T \\ m_A, n_A, P_A \end{array} + \begin{array}{c} V, T \\ m_B, n_B, P_B \end{array} = \begin{array}{c} V, T \\ m_C = m_A + m_B \\ n_C = n_A + n_B \\ P_C = P_A + P_B \end{array}$$

The pressure of a gas mixture is equal to the sum of the pressures each gas would exert if it existed alone at T and V .

By combining the results of the Amagat and Dalton models i.e. (1) and (2), we obtain

$$\frac{P_i}{P} = \frac{V_i}{V} = \frac{n_i}{n}$$

Therefore, Amagat's law and Dalton's law are equivalent to each other if the gases and the mixture are ideal gases.

Mixture Properties

Extensive properties such as \mathbf{U} , \mathbf{H} , \mathbf{c}_p , \mathbf{c}_v and \mathbf{S} can be found by adding the contribution of each component at the condition at which the component exists in the mixture.

$$\begin{aligned}\mathbf{U} = \sum \mathbf{U}_i &= \sum \mathbf{m}_i \mathbf{u}_i = \mathbf{m} \sum \mathbf{Y}_i \mathbf{u}_i = \mathbf{m} \mathbf{u} \\ &= \sum \mathbf{n}_i \bar{\mathbf{u}}_i = \mathbf{n} \sum \mathbf{X}_i \bar{\mathbf{u}}_i = \mathbf{n} \bar{\mathbf{u}}\end{aligned}$$

where $\bar{\mathbf{u}}$ is the specific internal energy of the mixture per mole of the mixture.

$\mathbf{u} = \sum \mathbf{Y}_i \mathbf{u}_i$
$\mathbf{h} = \sum \mathbf{Y}_i \mathbf{h}_i$
$\mathbf{c}_v = \sum \mathbf{Y}_i \mathbf{c}_{v_i}$
$\mathbf{c}_p = \sum \mathbf{Y}_i \mathbf{c}_{p_i}$
$\mathbf{s} = \sum \mathbf{Y}_i \mathbf{s}_i$

Changes in internal energy and enthalpy of mixtures

$$\mathbf{u}_2 - \mathbf{u}_1 = \sum \mathbf{Y}_i (\mathbf{u}_2 - \mathbf{u}_1)_i = \int_{T_1}^{T_2} \mathbf{c}_v \, dT = \mathbf{c}_v (T_2 - T_1)$$

$$\mathbf{h}_2 - \mathbf{h}_1 = \sum \mathbf{Y}_i (\mathbf{h}_2 - \mathbf{h}_1)_i = \int_{T_1}^{T_2} \mathbf{c}_p \, dT = \mathbf{c}_p (T_2 - T_1)$$

$$\mathbf{s}_2 - \mathbf{s}_1 = \sum \mathbf{Y}_i (\mathbf{s}_2 - \mathbf{s}_1)_i = \mathbf{c}_p \ln \frac{T_2}{T_1} - \mathbf{R} \ln \frac{P_2}{P_1}$$

These relationships can also be expressed on a per mole basis.

Entropy Change Due to Mixing of Ideal Gases

- when ideal gases are mixed, a change in entropy occurs as a result of the increase in disorder in the systems
- if the initial temperature of all constituents are the same and the mixing process is adiabatic
 - temperature does not change
 - but entropy does

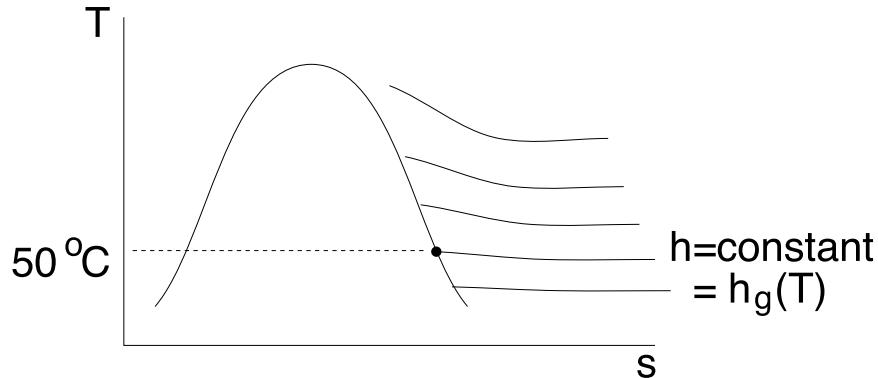
$$\begin{aligned}\Delta S &= - \left(m_A R_A \ln \frac{P_A}{P} + m_B R_B \ln \frac{P_B}{P} + \dots \right) \\ &= - \sum_{i=1}^j m_i R_i \ln \frac{P_i}{P} \\ &= - \mathcal{R} \sum_{i=1}^j n_i \ln X_i\end{aligned}$$

Notes:

- -ve sign because $\ln \frac{P_i}{P} < 0$
- $m_i R_i = m_i \frac{\mathcal{R}}{\tilde{M}_i} = n_i \mathcal{R}$

Psychrometrics

- studies involving mixtures of dry air and water vapour
- for $T \leq 50^{\circ}C$ ($P_{sat} \leq 13 \text{ kPa}$) $\Rightarrow h \approx h(T)$
 - water vapour can be treated as an ideal gas



Definitions

Moist Air

- a mixture of dry air and water vapour where dry air is treated as if it were a pure component
- the overall mixture is given as $\Rightarrow P = \frac{mRT}{V}$

Total Pressure

$$P = P_a + P_w$$

$$P_a = \frac{m_a R_a T}{V}$$

$$P_w = \frac{m_w R_w T}{V}$$

where P_a is the partial pressure of air and P_w is the partial pressure of water vapour. Typically $m_w \ll m_a$.

Relative Humidity - ϕ

$$\phi = \frac{P_w(T)}{P_{sat}(T)} = \frac{\text{vapour pressure at the prevailing T}}{\text{saturation pressure at the prevailing T}}$$

If $P_w = P_{sat}(T)$ the mixture is said to be saturated.

The relative humidity can also be written as

$$\phi = \frac{P_w}{P_{sat}} = \frac{\rho_w}{\rho_{sat}} = \frac{v_g}{v_w} = \frac{\text{mixture volume}}{\text{water volume}}$$

where v_g is the mixture specific volume and v_w is water specific volume.

Specific Humidity (Humidity ratio) - ω

$$\begin{aligned} \omega &= \frac{m_w}{m_a} = \frac{\text{mass of water vapour}}{\text{mass or air}} \\ &= \frac{\tilde{M}_w n_w}{\tilde{M}_a n_a} = \frac{\tilde{M}_w (P_w V / \mathcal{R} T)}{\tilde{M}_a (P_a V / \mathcal{R} T)} \\ &= \left(\frac{\tilde{M}_w}{\tilde{M}_a} \right) \left(\frac{P_w}{P_a} \right) \\ &= 0.622 \left(\frac{P_w}{P_a} \right) \end{aligned}$$

In addition ω can be written as

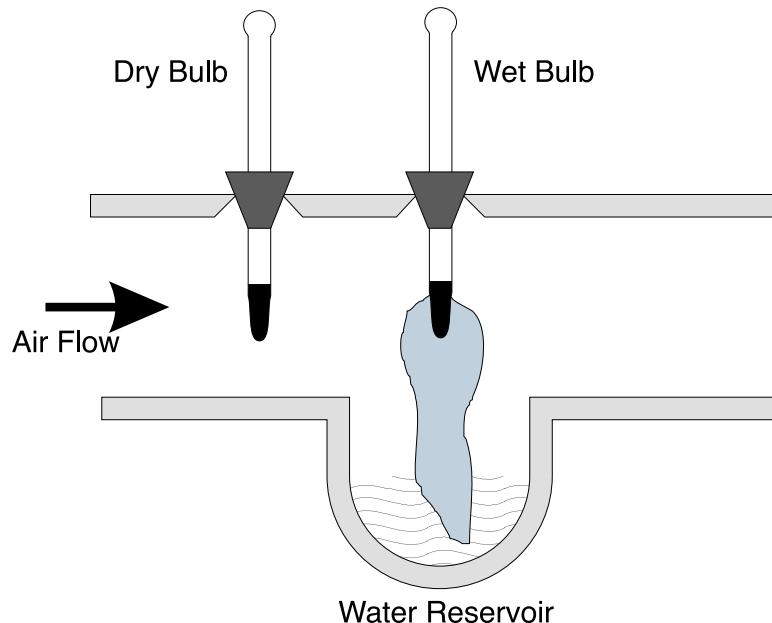
$$\omega = 0.622 \left(\frac{P_w}{P_a} \right) = 0.622 \left(\frac{P_w}{P - P_w} \right) = 0.622 \left(\frac{\phi P_{sat}}{P - \phi P_{sat}} \right)$$

which can be rearranged in terms of relative humidity

$$\phi = \frac{P \gamma}{P_{sat} \left(\omega + \frac{\tilde{M}_w}{\tilde{M}_a} \right)} = \frac{P \omega}{P_{sat} (\omega + 0.622)}$$

Dry Bulb Temperature - the temperature measured by a thermometer placed in a mixture of air and water vapour

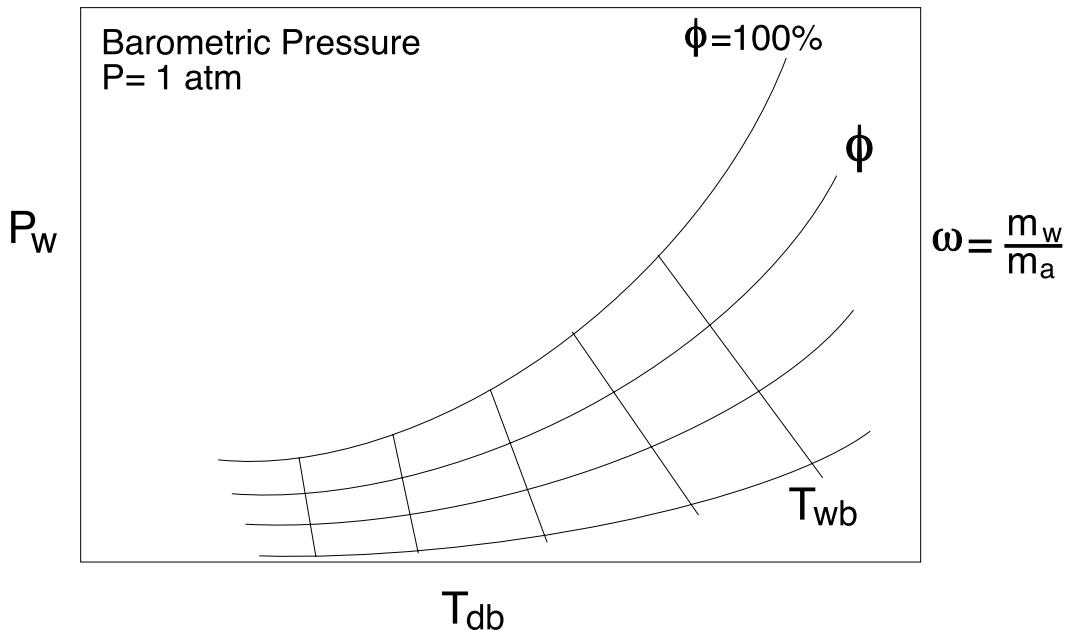
Wet Bulb Temperature



- thermometer surrounded by a saturated wick
- if air/water vapour mixture is not saturated, some water in the wick evaporates and diffuses into the air → cooling the water in the wick
- at the temperature of the water drops, heat is transferred to the water from both the air and the thermometer
- the steady state temperature is the wet-bulb temperature

Sling Thermometer - a rotating set of thermometers one of which measures wet bulb temperature and the other dry bulb temperature. T_{DB} and T_{WB} are sufficient to fix the state of the mixture.

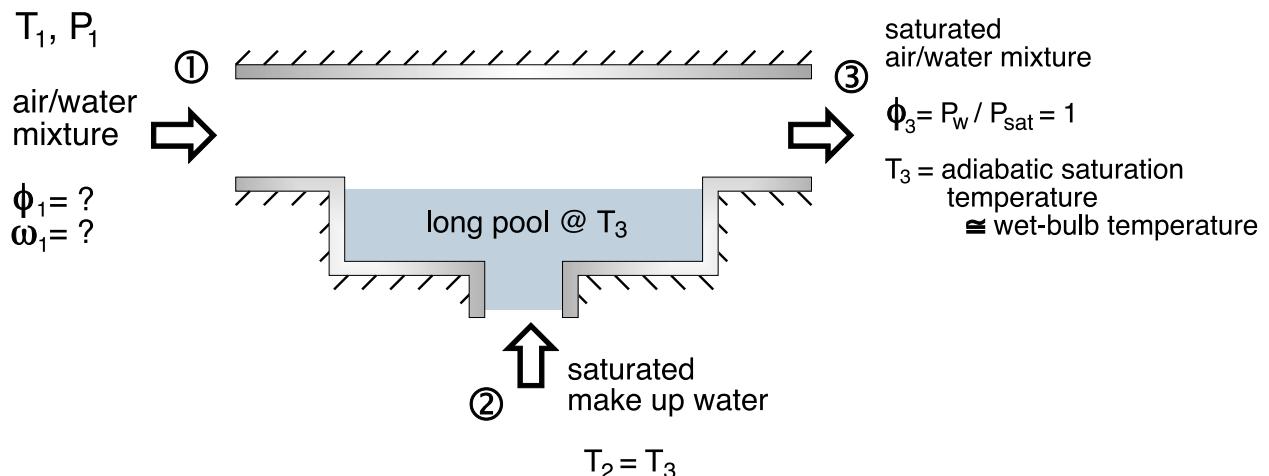
The Psychrometric Chart



where the **dry bulb** temperature is the temperature measured by a thermometer placed in the mixture and the **wet bulb** temperature is the adiabatic saturation temperature.

An Adiabatic Saturator

How can we measure humidity?



- the adiabatic saturator is used to measure humidity

- two inlets, single exit device through which moist air passes
- air-water mixture of unknown humidity enters at a known pressure and temperature
- if air/water mixture is not saturated, ($\phi < 100\%$), some water from the pool will evaporate
- the energy required to evaporate the water comes from the moist air \rightarrow mixture temperature decreases
- for a sufficiently long duct, the moisture exits with $\phi_3 = 1$
- the temperature of the exiting mixture is called the adiabatic saturation temperature