

Reacting Gas Mixtures

Reading

14-1 → 14-7

Problems

14-16, 14-22, 14-42, 14-48, 14-68,
14-77, 14-91, 14-93

Definitions

Combustion Process:

- a fuel made up of hydrocarbons is said to have burned completely if:
 - all the carbon present in the fuel is burned to carbon dioxide
 - all the hydrogen is burned to water
- if the conditions are not fulfilled the combustion process is incomplete

Combustion Reactions:

reactants → products

or

fuel + oxidizer → products

- in all cases the mass is conserved

mass of products = mass of reactants

Fuels:

- fuel is simply a combustible substance
- hydrocarbon fuels exist as liquids, gases and solids
 - liquids → gasoline - octane, C_8H_{18}
 - gases → methane, CH_4
 - solids → coal

Combustion Air:

- dry air is considered to be

21% oxygen }
 79% nitrogen } on a molar basis

$$molar\ ratio = \frac{n_{N_2}}{n_{O_2}} = \frac{0.79}{0.21} = 3.76$$

1 mole of air can then be written as [0.21 O₂ + 0.79 N₂]

Air-Fuel Ratio:

$$\frac{mass\ of\ air}{mass\ of\ fuel} = \frac{moles\ of\ air \times \tilde{M}_{air}}{moles\ of\ fuel \times \tilde{M}_{fuel}}$$

$$AF = \bar{AF} \left(\frac{\tilde{M}_{air}}{\tilde{M}_{fuel}} \right)$$

where:

AF - air fuel ratio on a mass basis

\bar{AF} - air fuel ratio on a molar basis

$$\tilde{M}_{air} = 28.97 \text{ kg/kmole}$$

Theoretical or Stoichiometric Air:

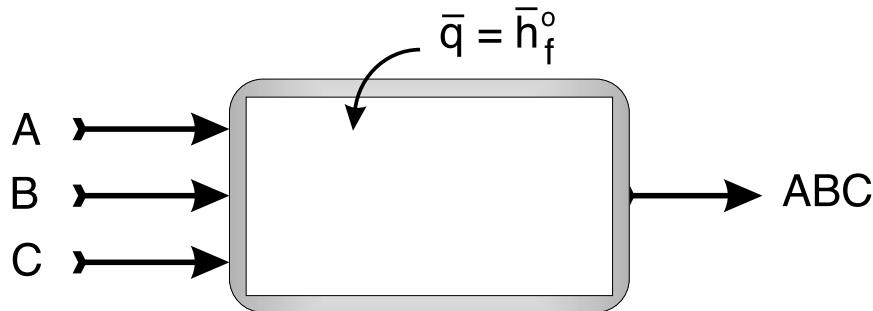
- the minimum amount of air that supplies sufficient oxygen for complete combustion of all carbon and hydrogen in the fuel - referred to as stoichiometric, 100% stoichiometric or theoretical
- no free oxygen would appear in the products

Equivalence Ratio:

- defined as

$$equivalence\ ratio = \frac{AF_{actual}}{AF_{theoretical}}$$

- if the equivalence ratio is:


– > 1 → lean mixture (excess air)

– < 1 → rich mixture (not enough air)

Conservation of Energy for Reacting Systems

Enthalpy of Formation

- when chemical reactions occur, reactants disappear and products are formed
→ differences cannot be calculated for all substances involved
- the enthalpy datum for reacting systems is set to zero at standard temperature and pressure
 - $T_{ref} = 25^\circ C \rightarrow 298 K$
 - $P_{ref} = 1 \text{ atm}$
- $h = 0$ assigned to elements in their most stable form i.e. $O_2, N_2, C, \text{etc.}$
- Enthalpy of Formation:** *the energy released or absorbed when a compound is formed from its stable elements at STP*

where \bar{h}_f^o is the enthalpy of formation.

Effects of Non-Standard Temperature

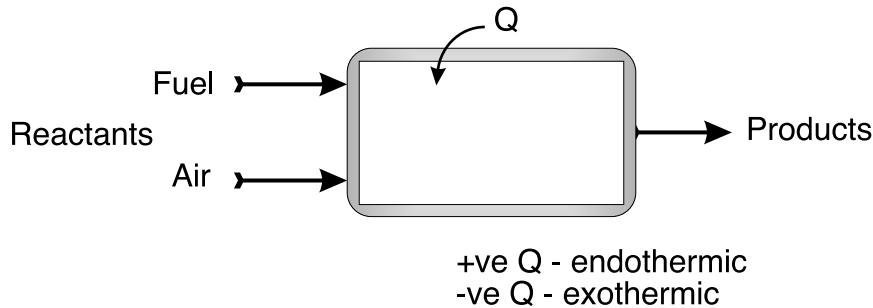
$$\bar{h}(T, P) = \bar{h}_f^o + \underbrace{(\bar{h}_{T,P} - \bar{h}_{T=25^\circ C, P=1 \text{ atm}})}_{\Delta \bar{h} \text{ at known temperatures}}$$

where

\bar{h}_f^o is the heat resulting from a chemical change at $T = 25^\circ C$ and $P = 1 \text{ atm}$

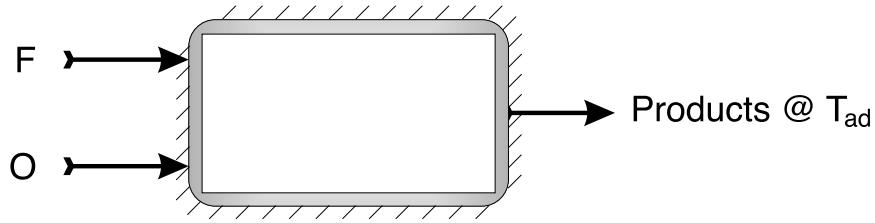
$\Delta \bar{h}$ is the heat resulting from a change in temperature (sensible heat) with respect to the reference temperature, $T_{ref} = 25^\circ C$

Enthalpy of Combustion


- **Enthalpy of Combustion:** the difference between the enthalpy of the products and the enthalpy of the reactants where complete combustion occurs at a given temperature and pressure

$$Q = \sum(mh)_P - \sum(mh)_R = \underbrace{H_P(T_P) - H_R(T_R)}_{H_{RP}}$$

$$Q = \sum(n\bar{h})_P - \sum(n\bar{h})_R = \underbrace{\bar{H}_P(T_P) - \bar{H}_R(T_R)}_{\bar{H}_{RP}}$$


where

$$\bar{h}_c = H_{RP}/\text{kmole of fuel}$$

Heating Value

- the heating value of a fuel is a positive value equal to the magnitude of the enthalpy of combustion when products are returned to the state of the reactants
- two values are used
 - **HHV:** higher heating value - obtained when all the water formed by combustion is a liquid at the reference temperature
 - **LHV:** lower heating value - obtained when all the water formed by combustion is a vapour as an ideal gas in the mixture of the products

Adiabatic Flame Temperature

- under adiabatic conditions, the maximum temperature attained by the products when combustion is complete is called the adiabatic flame or adiabatic combustion temperature

$$H_P(T_{ad}) = H_R(T_R)$$

$$\sum_P n_P (\bar{h}_f^o + \underbrace{\bar{h} - \bar{h}^o}_{\Delta \bar{h}})_P = \sum_R n_R (\bar{h}_f^o + \underbrace{\bar{h} - \bar{h}^o}_{\Delta \bar{h}})_R$$

We need to collect terms based on what we know or can readily calculate and what we do not know, i.e. terms that are a function of T_{ad} .

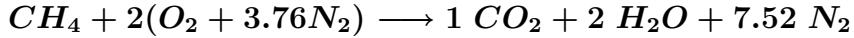
$$\begin{aligned} \sum_P \underbrace{n_P (\bar{h})_P}_{\substack{\text{sensible heat} \\ \text{function of } T_{ad}}} &= \sum_R \underbrace{n_R (\bar{h} - \bar{h}^o)_R - \left(-\sum_P n_P (\bar{h}^o)_P \right)}_{\substack{\text{sensible heat} \\ \text{function of } T_R \text{ or } T_{ref}}} \\ &\quad + \sum_R \underbrace{n_R (\bar{h}_f^o)_R - \sum_P n_P (\bar{h}_f^o)_P}_{\substack{\text{chemical heat} \\ \text{function of } T_R \text{ or } T_{ref}}} \end{aligned}$$

Fuel	Oxidizer	
	Oxygen (K)	Air (K)
H_2	3079	2384
CH_4 (methane)	3054	2227
C_3H_8 (propane)	3095	2268
C_8H_{18} (octane)	3108	2277

Dew Point

- since water is formed when hydrocarbon fuels are burned, the mole fraction of water vapour in the form of gaseous products can be significant
- if the gaseous products of combustion are cooled at constant mixture pressure the dew point temperature is reached when water vapour begins to condense
- since corrosion of duct work, mufflers etc. can occur, the knowledge of dew point temperature is important

Example:


The pressure of the water vapour is given as

$$P_w = X_w P$$

where the mole fraction is

$$X_w = \frac{n_w}{n}$$

As an example

$$X_w = \frac{c}{b + c + d} = \frac{2}{10.52} = 0.190$$

Knowing that the overall pressure of the products is **1 atm**, we can find P_w as

$$P_w = X_w P = 0.190 \times 1 \text{ atm} = 0.190 \text{ atm}$$

From the saturate water tables, we can find the temperature that corresponds to a vapour pressure of **0.190 atm** or **19.25 kPa**.

The dew point temperature is approximately $T_{DP} \approx 60^\circ C$.

Evaluation of Entropy for Reacting Systems

The 2nd law entropy equation can be written as

$$\underbrace{S_{in} - S_{out}}_{\text{due to heat \& mass transfer}} + \underbrace{S_{gen}}_{\text{generation}} = \underbrace{\Delta S_{system}}_{\text{change in entropy}}$$

For a closed system, such as a combustion process, the entropy balance on the system can be written as

$$\sum \frac{Q_i}{T_i} + S_{gen} = S_P - S_R$$

- a common datum must be used to assign entropy values for each substance involved in the reaction
- an entropy of 0 for pure crystalline substances is obtained at absolute zero
- the entropy relative to this datum is called absolute entropy
- absolute entropy at 1 atm and temperature T is denoted as $s^\circ(T)$ or $\bar{s}^\circ(T)$ for a per unit mass or per mole basis
- while \bar{h} was only a function of temperature for ideal gases, we must account for the effects of both T and P in entropy
- the entropy at any value of T and P can be calculated as

$$\bar{s}(T, P) = \underbrace{\bar{s}^\circ(T)}_{\text{tables}} - \mathcal{R} \ln \left(\frac{P_i}{P_{ref}} \right)$$

where

$$P_{ref} = 1 \text{ atm}$$

$$P_i = \text{partial pressure of } i\text{'th component}$$

$$\mathcal{R} = 8.31434 \text{ kJ/kmole} \cdot \text{K}$$

- the partial pressure P_i can also be written as

$$P_i = X_i P$$

and

$$\bar{s}(T, P_i) = \bar{s}^\circ(T) - \mathcal{R} \ln \left(\frac{X_i P}{P_{ref}} \right)$$

where P is the mixture pressure and X_i is the mole fraction of the $i\text{'th}$ component.