

State Equations

Reading
6-4 → 6-12

Problems

An Isentropic Process for an Ideal Gas

Given:

- constant specific heats over a wide range of temperature
- $ds = 0$
- $du = c_v dT \equiv c_v = \left(\frac{\partial u}{\partial T} \right)_V$
- $dh = c_p dT \equiv c_p = \left(\frac{\partial h}{\partial T} \right)_P$

Gibb's equation can be written as

$$Tds = du + Pdv = c_v dT + Pdv = 0 \quad (1)$$

where $ds = 0$ because we have assumed an isentropic process.

The definition of enthalpy is

$$h = u + Pv$$

Taking the derivative yields

$$dh = \underbrace{du + Pdv}_{\equiv Tds} + v dP$$

$$dh = Tds + v dP \Rightarrow Tds = 0 = dh - v dP$$

$$c_p dT - v dP = 0 \quad (2)$$

Equating Eqs. (1) and (2) through the dT term gives

$$\frac{dP}{P} = -\frac{c_p}{c_v} \frac{dv}{v} \quad (3)$$

Integrating (3) from its initial state to a final state

$$P_1 v_1^k = P_2 v_2^k = \text{constant} = Pv^k$$

where

$$k = \frac{c_p}{c_v}$$

The product of $P \cdot v^k$ remains constant for an ideal gas when:

- specific heats are constant
- the gas undergoes an isentropic process \rightarrow reversible + adiabatic

Combining this result with the ideal gas equation of state

$$\boxed{\frac{T_2}{T_1} = \left(\frac{v_1}{v_2}\right)^{k-1} = \left(\frac{P_2}{P_1}\right)^{(k-1)/k}}$$

The isentropic process is a special case of a more general process known as a polytropic process

where $\rightarrow Pv^n = \text{constant}$ and n is any number.

Special Cases

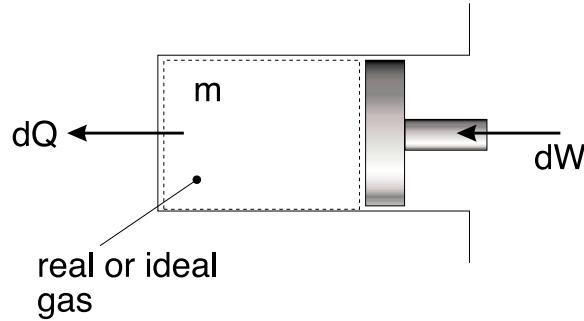
$$n = 1 \quad Pv = RT = \text{constant} \Rightarrow \text{isothermal process}$$

$$n = 0 \quad Pv^0 = \text{constant} = P \Rightarrow \text{isobaric process (constant pressure)}$$

$$n = k \quad Pv^k = \text{constant} \Rightarrow \text{isentropic process (}k = c_p/c_v\text{)}$$

$$n = \infty \quad Pv^\infty = \text{constant} \Rightarrow \text{isochoric process (constant volume)}$$

Reversible Compression/Expansion for a Fixed Mass



$$\begin{aligned} dU &= dW - dQ \\ mdu &= dW - dQ \end{aligned} \quad (1)$$

$$dS = -\frac{dQ}{T} + \mathcal{P}_S$$

where $\mathcal{P}_S = 0$ for a reversible process.

$$mds = -\frac{dQ}{T} \quad (2)$$

Combining (1) and (2) through the $-dQ$ term gives

$$mdu = dW + mTds \quad (3)$$

From Gibb's Eq., $Tds = du + Pdv$

$$mdu = mTds - mPdv \quad (4)$$

Combining Eqs. (3) and (4)

$$mTds - mPdv = dW + mTds$$

$$dW = -mPdv$$

$$W_{1-2} = -m \int_1^2 P dv \quad \Rightarrow \quad w_{1-2} = \frac{W_{1-2}}{m} = - \int_1^2 P dv$$

Reversible Isothermal Process for an Ideal Gas

We know for an ideal gas

$$Pv = \text{constant} = RT$$

or

$$P = \frac{\text{constant}}{v} \quad (1)$$

$$Pv = \text{constant} = P_1v_1 = P_2v_2 \quad (2)$$

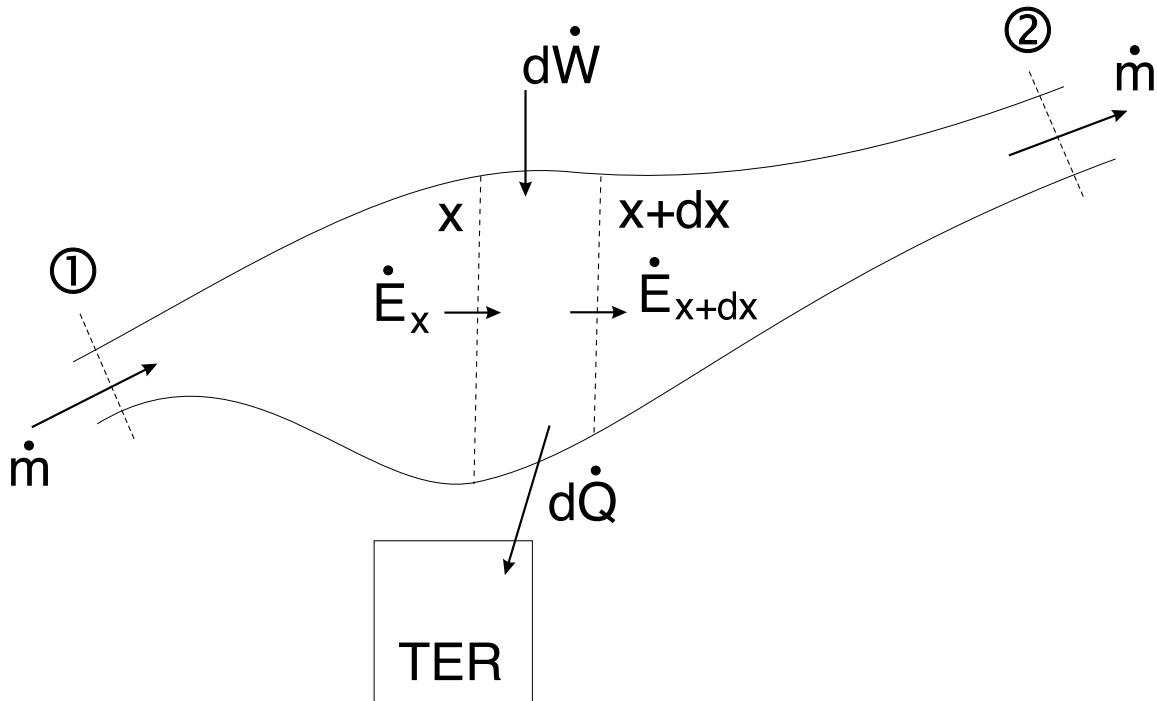
The work done at the boundary of a simple, compressible substance (S.C.S.) during a reversible process

$$\begin{aligned} w_{1-2} &= - \int_1^2 P dv = -\text{constant} \int_1^2 \frac{dv}{v} \\ &= -P_1 v_1 \ln \frac{v_2}{v_1} \\ &= P_1 v_1 \ln \frac{v_1}{v_2} \end{aligned}$$

$$\begin{aligned} W_{1-2} &= mRT \ln \frac{v_1}{v_2} = mRT \ln \frac{V_1}{V_2} \\ &= mRT \ln \frac{P_2}{P_1} \end{aligned}$$

A General Formulation

Steady State, Steady Flow in a Flow Channel of Arbitrary Cross-section with Work and Heat Transfer



$$\begin{aligned} d\dot{E} &= \dot{E}_{final} - \dot{E}_{initial} \\ &= \dot{E}_{x+dx} - \dot{E}_x \end{aligned}$$

where

$$\begin{aligned} \dot{E} &= \dot{m}(e + Pv) \\ &= \dot{m}\left(u + \frac{(v^*)^2}{2} + gz + Pv\right) \end{aligned}$$

From the 1st law

$$\frac{\text{rate of energy storage}}{\text{rate of work}} = \frac{\text{rate of heat transfer}}{\text{rate of leaving the system}} + \frac{\text{net rate of energy leaving the system}}{\text{leaving the system}}$$

$$\frac{dE_{CV}}{dt} = d\dot{W} - d\dot{Q} - d\dot{E} \quad (1)$$

where $\frac{dE_{CV}}{dt} = \mathbf{0}$ for steady state.

Equation (1) becomes

$$0 = d\dot{W} - d\dot{Q} - \dot{m} d \left[u + Pv + \frac{(v^*)^2}{2} + gz \right] \quad (2)$$

From the 2nd law

$$\begin{array}{l} \text{rate of} \\ \text{entropy} \\ \text{storage} \end{array} = \left\{ \begin{array}{ll} \text{rate of} & \text{rate of} \\ \text{entropy} & \text{entropy} \\ \text{inflow} & \text{outflow} \end{array} \right\} + \begin{array}{l} \text{rate of} \\ \text{entropy} \\ \text{production} \end{array}$$

$$\frac{dS_{CV}}{dt} = [\dot{m}s]_x - [\dot{m}s]_{x+dx} - \frac{d\dot{Q}}{T_{TER}} + \dot{\mathcal{P}}_S$$

where $\frac{dS_{CV}}{dt} = \mathbf{0}$ for steady state.

$$0 = -\dot{m}ds - \frac{d\dot{Q}}{T_{TER}} + \dot{\mathcal{P}}_S$$

or

$$d\dot{Q} = T_{TER}\dot{\mathcal{P}}_S - T_{TER}\dot{m}ds \quad (3)$$

Combining (2) and (3) through $d\dot{Q}$

$$T_{TER} \dot{\mathcal{P}}_S - T_{TER} \dot{m}ds = d\dot{W} - \dot{m} d \left(u + Pv + \frac{(v^*)^2}{2} + gz \right)$$

(4)

Equation (4) can be used for any SS-SF process.

Special Cases

1. Reversible, SS-SF Process

$$\frac{\dot{W}}{\dot{m}} = \int_{in}^{out} v dP$$

2. Incompressible Substance

$$\frac{\dot{W}}{\dot{m}} = v_{in} (P_{out} - P_{in})$$

3. Incompressible Substance and $d\dot{W} = 0$

$$\frac{P}{\rho} + \frac{(v^*)^2}{2} + gz = \text{constant}$$

4. Isothermal Ideal Gas, Compression/Expansion

$$\frac{\dot{W}}{\dot{m}} = P_{in} v_{in} \ln \left(\frac{P_{out}}{P_{in}} \right)$$

5. Isentropic Ideal Gas, Compression/Expansion

$$\frac{\dot{W}}{\dot{m}} = \left(\frac{k}{k-1} \right) (Pv)_{in} \left[\left(\frac{P_{out}}{P_{in}} \right)^{(k-1)/k} - 1 \right] = c_p (T_{out} - T_{in})$$

Incompressible Liquids

- a substance whose volume cannot be changed
- no substance is truly incompressible, but this model is good for most liquids and solids

State Postulate

- the number of independent intensive thermodynamic properties is equal to the number of relevant reversible work modes plus one.
- the “plus one” is for the independent control on energy through heat transfer
- we know that for a *simple* (has only one work mode), *compressible* (the work model is Pdv work) substance
 - 2 thermodynamic properties will fix the rest
 - * list of intensive properties includes, T, u, P, v, s
 - * state postulate says two will fix the rest, i.e. if u and v are known, the equations of state are

$$T = T(u, v)$$

$$P = P(u, v)$$

$$s = s(u, v)$$

Hence, if the substance is assumed to be incompressible, then its internal energy, for example, cannot be varied independently by work transfer \rightarrow but it can be varied by heat transfer at constant volume, i.e. $Pdv = 0$ since $dv = \text{constant}$. There are no reversible work modes.

i.e.

$$u = u(T) \text{ only}$$

$$dh = du + PdV + v dP$$

where $Pdv = 0$ for an incompressible substance.

For an incompressible substance

$$c_p = c_v = \bar{c}$$

Gibb's Equation. states

$$Td\mathbf{s} = d\mathbf{u} + Pd\mathbf{v}^0$$

therefore

$$d\mathbf{s} = \frac{d\mathbf{u}}{T} = \bar{c} \frac{dT}{T}$$

Integrating from the initial state to the final state

$$s_2 - s_1 = \bar{c} \ln \left(\frac{T_2}{T_1} \right)$$

as $T_2 \rightarrow T_1$, i.e. isothermal condition $\Rightarrow s_2 \rightarrow s_1$, i.e. isentropic.

In summary

$$u_2 - u_1 = \bar{c} (T_2 - T_1)$$

$$h_2 - h_1 = (u_2 - u_1) + v(P_2 - P_1)$$

$$s_2 - s_1 = \bar{c} \ln(T_2/T_1)$$