

**Problem Set for Error and
Complementary Error Function**

Due Date: February 12, 2004

1. Evaluate the following integrals to four decimal places using either power series, asymptotic series or polynomial approximations:

a) $\int_0^2 e^{-x^2} dx$

b) $\int_{0.001}^{0.002} e^{-x^2} dx$

c) $\frac{2}{\sqrt{\pi}} \int_{1.5}^{\infty} e^{-x^2} dx$

d) $\frac{2}{\sqrt{\pi}} \int_5^{10} e^{-x^2} dx$

e) $\int_1^{1.5} \left(\frac{1}{2} e^{-x^2} \right) dx$

f) $\sqrt{\frac{2}{\pi}} \int_1^{\infty} \left(\frac{1}{2} e^{-x^2} \right) dx$

2. The value of **erf 2** is **0.995** to three decimal places. Compare the number of terms required in calculating this value using:

a) the convergent power series, and
b) the divergent asymptotic series.

Compare the approximate errors in each case after two terms; after ten terms.

3. For the function **ierfc(x)** compute to four decimal places when $x = 0, 0.2, 0.4, 0.8$, and **1.6**.

4. Prove that

i) $\sqrt{\pi} \operatorname{erf}(x) = \gamma\left(\frac{1}{2}, x^2\right)$

ii) $\sqrt{\pi} \operatorname{erfc}(x) = \Gamma\left(\frac{1}{2}, x^2\right)$

where $\gamma\left(\frac{1}{2}, x^2\right)$ and $\Gamma\left(\frac{1}{2}, x^2\right)$ are the incomplete Gamma functions defined as:

$$\gamma(a, y) = \int_0^y e^{-u} u^{a-1} du$$

and

$$\Gamma(a, y) = \int_y^{\infty} e^{-u} u^{a-1} du$$

5. Show that $\theta(x, t) = \theta_0 \operatorname{erfc}(x/2\sqrt{\alpha t})$ is the solution of the following diffusion problem:

$$\frac{\partial^2 \theta}{\partial x^2} = \frac{1}{\alpha} \frac{\partial \theta}{\partial t} \quad x \geq 0, t > 0$$

and

$$\begin{aligned} \theta(0, t) &= \theta_0, \text{ constant} \\ \theta(x, t) &\rightarrow 0 \quad \text{as } x \rightarrow \infty \end{aligned}$$

6. Given $\theta(x, t) = \theta_0 \operatorname{erf} x/2\sqrt{\alpha t}$:

- i) Obtain expressions for $\frac{\partial \theta}{\partial t}$ and $\frac{\partial \theta}{\partial x}$ at any x and all $t > 0$
- ii) For the function $\frac{\sqrt{\pi}}{2} \frac{x}{\theta_0} \frac{\partial \theta}{\partial x}$

show that it has a maximum value when $x/2\sqrt{\alpha t} = 1/\sqrt{2}$ and the maximum value is $1/\sqrt{2e}$.

7. Given the transient point source solution valid within an isotropic half space

$$T = \frac{q}{2\pi kr} \operatorname{erfc}(r/2\sqrt{\alpha t}), \quad dA = r \ dr \ d\theta$$

derive the expression for the transient temperature rise at the centroid of a circular area (πa^2) which is subjected to a uniform and constant heat flux q . Superposition of point source solutions allows one to write

$$T_0 = \int_0^a \int_0^{2\pi} T \ dA$$

8. For a dimensionless time $Fo < 0.2$ the temperature distribution within an infinite plate $-L \leq x \leq L$ is given approximately by

$$\frac{T(\zeta, Fo) - T_s}{T_0 - T_s} = 1 - \left\{ \operatorname{erfc} \frac{1 - \zeta}{2\sqrt{Fo}} + \operatorname{erfc} \frac{1 + \zeta}{2\sqrt{Fo}} \right\}$$

for $0 \leq \zeta \leq 1$ where $\zeta = x/L$ and $Fo = \alpha t/L^2$.

Obtain the expression for the mean temperature $(\bar{T}(Fo) - T_s)/(T_0 - T_s)$ where

$$\bar{T} = \int_0^1 T(\zeta, Fo) d\zeta$$

The initial and surface plate temperature are denoted by T_0 and T_s , respectively.

9. Compare the approximate short time ($Fo < 0.2$) solution:

$$\theta(\zeta, Fo) = 1 - \sum_{n=1}^3 (-1)^{n+1} \left\{ \operatorname{erfc} \frac{(2n-1) - \zeta}{2\sqrt{Fo}} + \operatorname{erfc} \frac{(2n-1) + \zeta}{2\sqrt{Fo}} \right\}$$

and the approximate long time ($Fo > 0.2$) solution

$$\theta(\zeta, Fo) = \sum_{n=1}^3 \frac{2(-1)^{n+1}}{\delta_n} e^{-\delta_n^2 Fo} \cos(\delta_n \zeta)$$

with $\delta_n = (2n-1)\pi/2$.

For the centerline ($\zeta = 0$) compute to four decimal places $\theta(0, Fo)_{ST}$ and $\theta(0, Fo)_{LT}$ for $Fo = 0.02, 0.06, 0.1, 0.4, 1.0$ and 2.0 and compare your values with the “exact” values given in Table 1.

Table 1: Exact values of $\theta(0, Fo)$ for the Infinite Plate

Fo	$\theta(0, Fo)$
0.02	1.0000
0.06	0.9922
0.10	0.9493
0.40	0.4745
1.0	0.1080
2.0	0.0092